【题目】已知函数f(x)=lnx﹣ax+1(a∈R).
(1)求f(x)的单调区间;
(2)设g(x)=lnx,若对任意的x1∈(0,+∞),存在x2∈(1,+∞),使得f(x1)<g(x2)成立,求实数a的取值范围.
【答案】(1)当a≤0时,f(x)单调递增区间是(0,+∞);当a>0时,f(x)单调递增区间是(0,),单调递减在区间是(,+∞).(2)a.
【解析】
(1)函数求导得,然后分a≤0和a>0两种情况分类求解.
(2)根据对任意的x1∈(0,+∞),存在x2∈(1,+∞),使得f(x1)<g(x2)成立,等价于f(x)max<g(x)max,然后分别求最大值求解即可.
(1),
当a≤0时,f′(x)>0,f(x)单调递增,
当a>0时,在区间(0,)上,f′(x)>0,f(x)单调递增,
在区间(,+∞)上,f′(x)<0,f(x)单调递减.
综上:当a≤0时,f(x)单调递增区间是(0,+∞),
当a>0时,f(x)单调递增区间是(0,),单调递减在区间是(,+∞).
(2),
在区间(1,3)上,g′(x)>0,g(x)单调递增,
在区间(3,+∞)上,g′(x)<0,g(x)单调递减,
所以g(x)max=g(3)=ln3,
因为对任意的x1∈(0,+∞),存在x2∈(1,+∞),使得f(x1)<g(x2)成立,
等价于f(x)max<g(x)max,
由(1)知当a≤0时,f(x)无最值,
当a>0时,f(x)max=f()=﹣lna,
所以﹣lna<ln3,
所以,
解得a.
科目:高中数学 来源: 题型:
【题目】某网店经营各种儿童玩具,该网店老板发现该店经销的一种手腕可以摇动的款芭比娃娃玩具在某周内所获纯利(元)与该周每天销售这种芭比娃娃的个数(个)之间的关系如下表:
每天销售芭比娃娃个数(个) | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
该周内所获纯利(元) | 66 | 69 | 74 | 81 | 89 | 90 | 91 |
(1)由表中数据可推测线性相关,求出回归直线方程;
(2)请你预测当该店每天销售这种芭比娃娃20件时,每周获纯利多少?
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,,是某景区的两条道路(宽度忽略不计,为东西方向),Q为景区内一景点,A为道路上一游客休息区,已知,(百米),Q到直线,的距离分别为3(百米),(百米),现新修一条自A经过Q的有轨观光直路并延伸至道路于点B,并在B处修建一游客休息区.
(1)求有轨观光直路的长;
(2)已知在景点Q的正北方6百米的P处有一大型组合音乐喷泉,喷泉表演一次的时长为9分钟,表演时,喷泉喷洒区域以P为圆心,r为半径变化,且t分钟时,(百米)(,).当喷泉表演开始时,一观光车S(大小忽略不计)正从休息区B沿(1)中的轨道以(百米/分钟)的速度开往休息区A,问:观光车在行驶途中是否会被喷泉喷洒到,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】奇函数f(x)在R上存在导数,当x<0时,f(x),则使得(x2﹣1)f(x)<0成立的x的取值范围为( )
A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)
C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图甲,在等腰梯形中,,,是的中点.将沿折起,使二面角为,连接,得到四棱锥(如图乙),为的中点,是棱上一点.
(1)求证:当为的中点时,平面平面;
(2)是否存在一点,使平面与平面所成的锐二面角为,若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图①中△ABC 为直角三角形D、E 分别为 AB、AC 的中点,将△ADE 沿 DE 折起使平面 ADE⊥BCED,连接 AB,AC,BE如图②所示.
(1)在线段AC上找一点P,使EP∥平面ABD,并求出异面直线AB、EP所成的角;
(2)在平面ABD内找一点Q,使PQ⊥平面ABE,并求三棱锥P-ABE的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com