精英家教网 > 高中数学 > 题目详情

【题目】已知a0b0a+b=4mR

1)求+的最小值;

2)若|x+m||x2|≤+对任意的实数x恒成立,求m的范围.

【答案】(1)1;(2)-3≤m≤1

【解析】

1)结合条件构造均值定理的结构形式,利用均值定理求解最小值;

2)根据第(1)问可得+的最小值,求|x+m||x2|的最大值小于等于+的最小值.

1)∵a0b0a+b=4

+=+a+b=2++)≥2+2=1

当且仅当a=b=2时取“=”;∴+的最小值为1

2)若|x+m||x-2|≤+对任意的实数x恒成立,

|x+m||x-2|≤对任意的实数x恒成立,

|x+m||x-2|≤1对任意的实数x恒成;

|x+m||x-2|≤|(x+mx-2|=|m+2|

|m+2|≤1,∴-1≤m+2≤1,解得3≤m1,

m的取值范围是3≤m1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,点在椭圆上,且的周长为

(Ⅰ)求椭圆的方程;

(Ⅱ)若点的坐标为,不过原点的直线与椭圆相交于两点,设线段的中点为,点到直线的距离为,且三点共线,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】423日是世界读书日,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下图是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为读书谜,低于60分钟的学生称为非读书谜”.

1)求的值并估计全校3000名学生中读书谜大概有多少名?(将频率视为概率)

2)根据已知条件完成下面的列联表,并据此判断是否有的把握认为读书谜与性别有关?

非读书迷

读书迷

合计

40

25

合计

:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在,按照区间进行分组,绘制成如下频率分布直方图,规定不低于80(百分制)为优秀.

1)完成表格,并判断是否有90%以上的把握认为数学成绩优秀与教学改革有关

甲班

乙班

总计

大于等于80分的人数

小于80分的人数

总计

2)从乙班分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自发言的人数为随机变量,求的分布列和期望.:

0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人口逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:

平均每周进行长跑训练天数

不大于2

3天或4

不少于5

人数

30

130

40

若某人平均每周进行长跑训练天数不少于5天,则称其为“热烈参与者”,否则称为“非热烈参与者”.

1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数;

2)根据上表的数据,填写下列2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“热烈参与马拉松”与性别有关?

热烈参与者

非热烈参与者

合计

140

55

合计

附:k2=n为样本容量)

Pk2k0

0.500

0.400

0.250

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当前全世界人民越来越关注环境保护问题,某地某监测站点于20188月起连续n天监测空气质量指数(AQI),数据统计如下表:

空气质量指数(μg/m3

[050]

50100]

100150]

150200]

200250]

空气质量等级

轻度污染

中度污染

重度污染

天数

20

40

m

10

5

1)根据所给统计表和频率分布直方图中的信息求出nm的值,并完成频率分布直方图;

2)由频率分布直方图,求该组数据的平均数与中位数;

3)在空气质量指数分别为[050]和(50100]的监测数据中,用分层抽样的方法抽取6天,从中任意选取2天,求事件A“两天空气质量等级都为良发生的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四边形ABCD为菱形,GACBD交点,面平面ABCD.

1)证明:平面BDE

2)若为等边三角形,,三棱锥的体积为,求四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对于任意x[14],不等式0≤ax2+bx+4a≤4x恒成立,|a|+|a+b+25|的范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的四个顶点组成的四边形的面积为,且经过点

1求椭圆的方程;

2若椭圆的下顶点为,如图所示,点为直线上的一个动点,过椭圆的右焦点的直线垂直于,且与交于两点,与交于点,四边形的面积分别为的最大值

查看答案和解析>>

同步练习册答案