精英家教网 > 高中数学 > 题目详情
当不等式组
x≥0
y≥0
kx-y+2-k≥0(k<0)
所表示的平面区域的面积最小时,实数k的值为(  )
A、-
1
3
B、-
1
2
C、-1
D、-2
分析:由于不等式组所表示的平面区域由三条直线围成,其中直线kx-y+2-k=0(k<0)即y-2=k(x-1)(k<0)经过定点(1,2),
因此问题转化为求经过定点(1,2)的直线与两坐标轴在第一象限内所围成的三角形的面积的最小值.
解答:解:由于不等式组所表示的平面区域由三条直线围成,其中直线kx-y+2-k=0(k<0)即y-2=k(x-1)(k<0)经过定点(1,2),
因此问题转化为求经过定点(1,2)的直线与两坐标轴在第一象限内所围成的三角形的面积的最小值.
如图所示,设所围成的区域的面积为S,则S=
1
2
•|OA|•|OB|=
1
2
•|2-k|•|1-
2
k
|.
因为k<0,
所以-k>0,
所以S=
1
2
(4-k-
4
k
)=
1
2
[4+(-k)+(-
4
k
)]≥
1
2
[4+2
(-4)(-
4
k
)
]=4,
当S取得最小值4时,-k=-
4
k
,解得k=-2.
精英家教网
故选D
点评:此题考查了不等式组表示平面区域,还考查了直线的方程及三角形的面积公式和均值不等式求函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若A为不等式组
x≤0
y≥0
y-x≤2
表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若A为不等式组
x≤0
y≥0
y-x≤2
表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为(  )
A、
3
4
B、1
C、
7
4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设O为坐标原点,点M坐标为(3,2),若点N(x,y)满足不等式组
x≥0
y≥0
x+y≤s
2x+y≤4
,当1≤s≤3时,则
OM
ON
的最大值的变化范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•宜昌模拟)当实数x、y满足不等式组
x≥0
y≥0
2x+y≤2
时,恒有ax+y≤3成立,则实数a的取值范围为(  )

查看答案和解析>>

同步练习册答案