分析 (1)先求出曲线C的直角坐标方程,再求曲线C的参数方程.
(2)先求出直线l的普通方程为sinα•x-cosα•y-sinα=0,再求出圆心(2,1)到直线sinα•x-cosα•y-sinα=0的距离,由此利用勾股定理能求出直线l的倾斜角a的值.
解答 解:(1)∵曲线C的极坐标方程是ρ=2sinθ+4cosθ,
∴ρ2=2ρsinθ+4ρcosθ,
∴曲线C的直角坐标方程为x2+y2=2y+4x,
即(x-2)2+(y-1)2=5,
∴曲线C的参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{5}cosα}\\{y=1+\sqrt{5}sinα}\end{array}\right.,0≤α<2π$.
(2)∵直线l的参数方程是$\left\{\begin{array}{l}{x=1+tcosa}\\{y=tsina}\end{array}\right.$(t为参数),
∴消去参数得直线l的普通方程为sinα•x-cosα•y-sinα=0,
∵曲线C:(x-2)2+(y-1)2=5是圆心为(2,1),半径r=$\sqrt{5}$的圆,
∴圆心(2,1)到直线sinα•x-cosα•y-sinα=0的距离:
d=$\frac{|2sinα-cosα-sinα|}{\sqrt{si{n}^{2}α+co{s}^{2}α}}$=|sinα-cosα|=|$\sqrt{2}sin(α-\frac{π}{4})$|,
∵直线l与曲线C相交于A、B两点,且|AB|=2$\sqrt{3}$,
∴${d}^{2}+(\sqrt{3})^{2}=(\sqrt{5})^{2}$,
∴d=|$\sqrt{2}sin(α-\frac{π}{4})$|=$\sqrt{2}$,
∴$sin(α-\frac{π}{4})$=1,或$sin(α-\frac{π}{4})$=-1,
∵直线l的倾斜角a∈[0,π),∴$α-\frac{π}{4}$=$\frac{π}{2}$或$sin(α-\frac{π}{4})$=-1无解,
∴$α=\frac{3π}{4}$.
∴直线l的倾斜角a的值为$\frac{3π}{4}$.
点评 本题考查圆的参数方程的求法,考查直线的倾斜角的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.
科目:高中数学 来源: 题型:选择题
A. | f(x)∈M且g(x)∈M | B. | f(x)∉M,g(x)∈M | C. | f(x)∈M,g(x)∉M | D. | f(x)∉M且g(x)∉M |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 必要不充分条件 | B. | 充分不必要条件 | ||
C. | 既不充分也不必要条件 | D. | 充要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{21-6\sqrt{3}}$ | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com