精英家教网 > 高中数学 > 题目详情
13.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有$\frac{f(a)+f(b)}{a+b}>0$成立.
(1)判断f(x)在[-1,1]上的单调性,并证明它;
(2)解不等式f(x2)<f(2x);
(3)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.

分析 (1)利用函数单调性的定义进行证明:在区间[-1,1]任取x1、x2,且x1<x2,利用函数为奇函数的性质结合已知条件中的分式,可以证得f(x1)-f(x2)<0,所以函数f(x)是[-1,1]上的增函数;
(2)由(1)可得f(x)在[-1,1]递增,不等式即为-1≤x2<2x≤1,解不等式即可得到所求范围;
(3)根据函数f(x)≤m2-2am+1对所有的x∈[-1,1],a∈[-1,1]恒成立,说明f(x)的最大值1小于或等于右边,因此先将右边看作a的函数,m为参数系数,解不等式组,即可得出m的取值范围.

解答 解:(1)f(x)是[-1,1]上的增函数.
理由:任取x1、x2∈[-1,1],且x1<x2
则f(x1)-f(x2)=f(x1)+f(-x2
∵$\frac{f({x}_{1})+f(-{x}_{2})}{{x}_{1}+(-{x}_{2})}$>0,
即$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,
∵x1-x2<0,
∴f(x1)-f(x2)<0.
则f(x)是[-1,1]上的增函数. 
(2)由(1)可得f(x)在[-1,1]递增,
可得不等式f(x2)<f(2x),即为
$\left\{\begin{array}{l}{-1≤{x}^{2}≤1}\\{-1≤2x≤1}\\{{x}^{2}<2x}\end{array}\right.$即$\left\{\begin{array}{l}{-1≤x≤1}\\{-\frac{1}{2}≤x≤\frac{1}{2}}\\{0<x<2}\end{array}\right.$
解得0<x≤$\frac{1}{2}$,则解集为(0,$\frac{1}{2}$];
(3)要使f(x)≤m2-2am+1对所有的x∈[-1,1],a∈[-1,1]恒成立,
只须f(x)max≤m2-2am+1,即1≤m2-2am+1对任意的a∈[-1,1]恒成立,
亦即m2-2am≥0对任意的a∈[-1,1]恒成立.令g(a)=-2ma+m2
只须$\left\{\begin{array}{l}{g(-1)=2m+{m}^{2}≥0}\\{g(1)={m}^{2}-2m≥0}\end{array}\right.$,
解得m≤-2或m≥2或m=0,
则实数m的取值范围是{m|m=0或m≤-2或m≥2}.

点评 本题考查了抽象函数的单调性与函数的值域、不等式解法及恒成立委托的解法,属于中档题,解题时应该注意题中的主元与次元的处理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2.数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{3}{{{a_n}{a_{n+1}}}}$,Tn是数列{bn}的前n项和,求使得${T_n}<\frac{m}{2016}$对所有的(n∈N*)都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的顶点A(1,3),M(2,2)是AB的中点,BC边上的高AD所在直线方程为4x+y-7=0,AC边上的高BE所在直线方程为2x+3y-9=0.
求:(1)求顶点B的坐标及边BC所在的直线方程;
(2)求AB边上的中线CM所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二次函数f(x)满足f(x+1)-f(x)=2x(x∈R),且f(0)=1,
(1)求f(x)的解析式;
(2)当x∈[-1,1]时,求函数g(x)=f(x)-2x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设等差数列{an}的前n项和为Sn,且a3=2,a4=3.
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合I=R,集合M={x|x<1},N={x|-1<x<2},则集合{x|-1<x<1}等于(  )
A.M∪NB.M∩NC.(∁IM)∪ND.(∁IM)∩N

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算下列各题:
$(1){0.064^{-\frac{1}{3}}}-{(-\frac{7}{8})^0}+{[{(-2)^3}]^{-\frac{4}{3}}}+{16^{-0.75}}+{0.01^{\frac{1}{2}}}$
(2)2lg$\frac{5}{3}-lg\frac{7}{4}+2lg3+\frac{1}{2}$lg49.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数y=2x3-mx+1在区间[1,2]上单调,则实数m的取值范围为(-∞,6]∪[24,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知复数z1=x+8i,z2=3+2yi,z=x+yi(x、y∈R),若z1=z2
(1)求|z|;
(2)若z是关于x的方程x2-mx+n=0(m、n∈R)的一个根,求m、n的值.

查看答案和解析>>

同步练习册答案