精英家教网 > 高中数学 > 题目详情
10.已知如图方程序框图输入的x值依次为22,24,26,…,100,则输出的b=13.

分析 模拟执行程序框图可得b的值是统计等差数列22,24,26,…,100中小于85且大于等于60的个数,利用等差数列的通项公式即可得解.

解答 解:∵模拟执行程序框图可得b的值是统计等差数列22,24,26,…,100中小于85且大于等于60的个数,
∴b=$\frac{84-22}{2}$-$\frac{60-22}{2}$+1=13.
故答案为:13.

点评 本题主要考查了循环结构的程序框图及等差数列的通项公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,AB为半圆的直径,C为$\widehat{AB}$的中点,点E为$\widehat{CB}$上的一点.
(1)若$\widehat{CE}=\widehat{BE}$,求$\frac{BE}{AF}$的值;
(2)若tan∠CBE=$\frac{1}{2}$,求$\frac{EF}{AF}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在等差数列{an}中,S2=S6,a4=1,则an=9-2n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.无论x为何值,分式$\frac{1}{{x}^{2}+2x+c}$总有意义,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如果某商品的价格上涨x%,而卖出的数量则减少0.5x%,那么当x为何值时销售额最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(1+x)e-2x,g(x)=ax+$\frac{{x}^{3}}{2}$+1+2xcosx.
(1)求证:当x∈[0,1]时,1-x≤f(x)≤$\frac{1}{1+x}$;
(2)若f(x)≥g(x)对x∈[0,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.集合A={x|-1<x<1},B={x|x≤a},若A∪B={x|x<1},求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,且满足a1=$\frac{1}{2}$,an+2Sn•Sn-1=0(n≥2).
(1)问:数列{$\frac{1}{{S}_{n}}$}是否为等差数列?并证明你的结论;
(2)求Sn和an
(3)求证:S12+S22+S32+…+Sn2≤$\frac{1}{2}$-$\frac{1}{4n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l:y=x+m交椭圆C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1于不同的A、B两点,求|AB|的最大值.

查看答案和解析>>

同步练习册答案