【题目】《中国诗词大会》(第三季)亮点颇多,在“人生自有诗意”的主题下,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《沁园春·长沙》、《蜀道难》、《敕勒歌》、《游子吟》、《关山月》、《清平乐·六盘山》排在后六场,且《蜀道难》排在《游子吟》的前面,《沁园春·长沙》与《清平乐·六盘山》不相邻且均不排在最后,则后六场的排法有__________种.(用数字作答)
【答案】144
【解析】
由特殊位置优先处理,先排最后一个节目,共4(种),相邻问题由捆绑法求解即剩余五个节目按A与F不相邻排序,共72(种)排法,
定序问题用倍缩法求解即可B排在D的前面,只需除以即可,
《沁园春长沙》、《蜀道难》、《敕勒歌》、《游子吟》、《关山月》、《清平乐六盘山》,
分别记为A,B,C,D,E,F,
由已知有B排在D的前面,A与F不相邻且不排在最后.
第一步:在B,C,D,E中选一个排在最后,共4(种)选法
第二步:将剩余五个节目按A与F不相邻排序,共72(种)排法,
第三步:在前两步中B排在D的前面与后面机会相等,则B排在D的前面,只需除以2即可,
即六场的排法有4×72÷2=144(种)
故答案为:144.
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线C1的极坐标方程是,在以极点为原点O,极轴为x轴正半轴(两坐标系取相同的单位长度)的直角坐标系xOy中,曲线C2的参数方程为(θ为参数).
(1)求曲线C1的直角坐标方程与曲线C2的普通方程;
(2)将曲线C2经过伸缩变换后得到曲线C3,若M,N分别是曲线C1和曲线C3上的动点,求|MN|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年国际象棋奥林匹克团体赛中国男队、女队同时夺冠.国际象棋中骑士的移动规则是沿着3×2格或2×3格的对角移动.在历史上,欧拉、泰勒、哈密尔顿等数学家研究了“骑士巡游”问题:在格的黑白相间的国际象棋棋盘上移动骑士,是否可以让骑士从某方格内出发不重复地走遍棋盘上的每一格?
图(一)给出了骑士的一种走法,它从图上标1的方格内出发,依次经过标2,3,4,5,6,,到达标64的方格内,不重复地走遍棋盘上的每一格,又可从标64的方格内直接走回到标1的方格内.如果骑士的出发点在左下角标50的方格内,按照上述走法,_____(填“能”或“不能”)走回到标50的方格内.
若骑士限制在图(二)中的3×4=12格内按规则移动,存在唯一一种给方格标数字的方式,使得骑士从左上角标1的方格内出发,依次不重复经过2,3,4,5,6,,到达右下角标12的方格内,分析图(二)中A处所标的数应为____.
35 | 38 | 27 | 16 | 29 | 42 | 55 | 18 |
26 | 15 | 36 | 39 | 54 | 17 | 30 | 43 |
37 | 34 | 13 | 28 | 41 | 32 | 19 | 56 |
14 | 25 | 40 | 33 | 20 | 53 | 44 | 31 |
63 | 12 | 21 | 52 | 1 | 8 | 57 | 46 |
24 | 51 | 64 | 9 | 60 | 45 | 2 | 5 |
11 | 62 | 49 | 22 | 7 | 4 | 47 | 58 |
50 | 23 | 10 | 61 | 48 | 59 | 6 | 3 |
图(一)
1 | |||
A | |||
3 | 12 |
图(二)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某日A, B, C三个城市18个销售点的小麦价格如下表:
销售点序号 | 所属城市 | 小麦价格(元/吨) | 销售点序号 | 所属城市 | 小麦价格(元/吨) |
1 | A | 2420 | 10 | B | 2500 |
2 | C | 2580 | 11 | A | 2460 |
3 | C | 2470 | 12 | A | 2460 |
4 | C | 2540 | 13 | A | 2500 |
5 | A | 2430 | 14 | B | 2500 |
6 | C | 2400 | 15 | B | 2450 |
7 | A | 2440 | 16 | B | 2460 |
8 | B | 2500 | 17 | A | 2460 |
9 | A | 2440 | 18 | A | 2540 |
(Ⅰ)求B市5个销售点小麦价格的中位数;
(Ⅱ)甲从B市的销售点中随机挑选一个购买1吨小麦,乙从C市的销售点中随机挑选一个购买1吨小麦,求甲花费的费用比乙高的概率;
(Ⅲ)如果一个城市的销售点小麦价格方差越大,则称其价格差异性越大.请你对A、B、C三个城市按照小麦价格差异性从大到小进行排序(只写出结果).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的.
(1)求乙同学答对2个题目的概率;
(2)若甲、乙两位同学答对题目个数分别是m,n,分别求出甲、乙两位同学答对题目个数m,n的概率分布和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣x2+ax,g(x)=ex﹣e,其中a>0.
(1)若a=1,证明:f(x)≤0;
(2)用max{m,n}表示m和n中的较大值,设函数h(x)=max{f(x),g(x)},讨论函数h(x)在(0,+∞)上的零点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的最小正周期为,将函数的图像向右平移个单位长度,再向下平移个单位长度,得到函数的图像.
(1)求函数的单调递增区间;
(2)在锐角中,角的对边分别为,若,,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列命题:
①回归直线恒过样本点的中心,且至少过一个样本点;
②两个变量相关性越强,则相关系数r就越接近于1;
③将一组数据的每个数据都加一个相同的常数后,方差不变;
④在回归直线方程 中,当解释变量x增加一个单位时,预报变量平均减少0.5;
⑤在线性回归模型中,相关指数表示解释变量对于预报变量的贡献率,越接近于1,表示回归效果越好;
⑥对分类变量与,它们的随机变量的观测值来说, 越小,“与有关系”的把握程度越大.
⑦两个模型中残差平方和越小的模型拟合的效果越好.
则正确命题的个数是( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com