精英家教网 > 高中数学 > 题目详情
16.已知数列{an}满足$\frac{{a}_{n+1}+{a}_{n}-1}{{a}_{n+1}-{a}_{n}+1}$=n,n∈N*,且a2=6.
(1)求a1,a3,a4
(2)猜想数列{an}的通项公式,并用数学归纳法证明;
(3)设Cn=4n+(-1)n-1λ•2${\;}^{\frac{{a}_{n}}{2n-1}+1}$(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,数列{cn}是单调递增数列.

分析 (1)利用$\frac{{a}_{n+1}+{a}_{n}-1}{{a}_{n+1}-{a}_{n}+1}$=n,n∈N*,且a2=6,求a1,a3,a4
(2)猜想an=n(2n-1),用数学归纳法证明;
(3)由an=n+1,知cn=4n+(-1)n-1λ•2n+1,要使cn+1>cn恒成立,则cn+1-cn=4n+1-4n+(-1)nλ•2n+2-(-1)n-1λ•2n+1>0恒成立,故(-1)n-1λ<2n-1恒成立. 由此能得到存在λ=-1,使得对任意n∈N*,都有cn+1>cn

解答 解:(1)∵$\frac{{a}_{n+1}+{a}_{n}-1}{{a}_{n+1}-{a}_{n}+1}$=n,n∈N*,且a2=6,
∴a1=1,a3=15,a4=28;
(2)猜想an=n(2n-1),用数学归纳法证明:
①n=1,2,结论成立;
②假设n=k(k≥2)时命题成立,即ak=k(2k-1),
则n=k+1时,∵$\frac{{a}_{k+1}+{a}_{k}-1}{{a}_{k+1}-{a}_{k}+1}$=k,
∴ak+1=$\frac{k+1}{k-1}$(ak-1)=(k+1)[2(k+1)-1],
∴结论成立,
由①②可得an=n(2n-1);
(3)∵an=n(2n-1),∴cn=4n+(-1)n-1λ•2n+1
要使cn+1>cn恒成立,
∴cn+1-cn=4n+1-4n+(-1)nλ•2n+2-(-1)n-1λ•2n+1>0恒成立
∴3•4n-3λ•(-1)n-12n+1>0恒成立,
∴(-1)n-1λ<2n-1恒成立.             
(ⅰ)当n为奇数时,即λ<2n-1恒成立,当且仅当n=1时,2n-1有最小值为1,
∴λ<1.
(ⅱ)当n为偶数时,即λ>-2n-1恒成立,当且仅当n=2时,-2n-1有最大值-2,
∴λ>-2.
即-2<λ<1,又λ为非零整数,则λ=-1.
综上所述,存在λ=-1,使得对任意n∈N*,都有cn+1>cn

点评 本题考查数列与不等式的综合,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.盒子中有10个大小相同的球,其中有7个红球,3个白球,从中任取3个球,把取到的白球个数记为X,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某地随机检查了140名成年男性红细胞数(1012/L),数据的分布及频数如表:
分 组[3.8,4.0)[4.0,4.2)[4.2,4.4)[4.4,4.6)[4.6,4.8)[4.8,5.0)
频 数2611253227
频 率0.0140.0430.0790.1790.193
分 组[5.0,5.2)[5.2,5.4)[5.4,5.6)[5.6,5.8)[5.8,6.0]合计
频 数1713421140
频 率0.1230.0930.0140.0071.000
(1)完成上面的频率分布表;
(2)根据上表画出频率分布直方图;
(3)根据上面的图表估计成年男性红细胞数在正常值(4.0~5.5)内的百分比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某校有教职工500人,对他们进行年龄状况和受教育程度的调查,其结果如下:
高中专科本科研究生合计
35岁以下101505035245
35-50201002013153
50岁以上3060102102
随机的抽取一人,求下列事件的概率:
(1)50岁以上具有专科或专科以上学历;
(2)具有本科学历;
(3)不具有研究生学历.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设cos(α+π)=$\frac{\sqrt{3}}{2}$(π<α<$\frac{3π}{2}$),那么sin(2π-α)的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合U={x|x≤-1或x≥0},A={x|0≤x≤2},B={x|x2>1},则集合A∩(∁UB)等于(  )
A.{x|x>0或x<-1}B.{x|1<x≤2}C.{x|0≤x≤1}D.{x|0≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,若A:B:C=3:4:5,则a:b:c等于(  )
A.3:4:5B.2:$\sqrt{6}$:($\sqrt{3}$+1)C.1:$\sqrt{3}$:2D.2$\sqrt{2}$:2$\sqrt{3}$:($\sqrt{3}$+$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.定义在[-1,1]上的奇函数f(x)满足当-1≤x<0时,f(x)=-$\frac{2^x}{{{4^x}+1}}$,
(Ⅰ)求f(x)在[-1,1]上的解析式;
(Ⅱ)判断并证明f(x)在(0,1]上的单调性;
(Ⅲ)当x∈(0,1]时,函数g(x)=$\frac{2^x}{f(x)}-{2^x}$-m有零点,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=-2sin(-x)sin($\frac{π}{2}$+x).
(1)求f(x)的对称轴及单调增区间;
(2)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

同步练习册答案