【题目】在中,角,,的对边分别是,且.
(1)求角的大小;
(2)已知等差数列的公差不为零,若,且,,成等比数列,求数列的前项和.
【答案】(1);(2).
【解析】
1)首先利用正弦定理和三角函数关系式的恒等变换求出C的值.(2)利用(1)的结论,进一步利用等差数列的性质求出数列的首项和公差,进一步求出数列的通项公式,最后利用裂项相消法求出数列的和.
(1)在△ABC中,角A,B,C的对边分别是a,b,c,且acosB+bcosA=2ccosC.
利用正弦定理sinAcosB+sinBcosA=2sinCcosC,
所以sin(A+B)=sinC=2sinCcosC,
由于0<C<π,
解得C.
(2)设公差为d的等差数列{an}的公差不为零,若a1cosC=1,则a1=2,
且a1,a3,a7成等比数列,所以,解得d=1.
故an=2+n﹣1=n+1.
所以,
所以,
,
.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4cosωxsin(ωx)(ω>0)的最小正周期是π.
(1)求函数f(x)在区间(0,π)上的单调递增区间;
(2)若f(x0),x0∈[,],求cos2x0的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为的函数是奇函数
(Ⅰ)求值;
(Ⅱ)判断并证明该函数在定义域上的单调性;
(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围;
(Ⅳ)设关于的函数有零点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)指出函数的基本性质:定义域,奇偶性,单调性,值域(结论不需证明),并作出函数的图象;
(2)若关于的不等式恒成立,求实数的取值范围;
(3)若关于的方程恰有个不同的实数解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,要测量山顶上的电视塔FG的高度,已知山的西面有一栋楼AC(该楼的高度低于山的高度).试设计在楼AC上测山顶电视塔高度的测量、计算方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①回归直线过样本点中心(,)
②将一组数据中的每个数据都加上或减去同一个常数后,平均值不变
③将一组数据中的每个数据都加上或减去同一个常数后,方差不变
④在回归方程=4x+4中,变量x每增加一个单位时,y平均增加4个单位
其中错误命题的序号是( )
A.①B.②C.③D.④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某海滨浴场一天的海浪高度是时间的函数,记作,下表是某天各时的浪高数据:
0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
(1)选用一个三角函数来近似描述这个海滨浴场的海浪高度与时间的函数关系;
(2)依据规定,当海浪高度不少于时才对冲浪爱好者开放海滨浴场,请依据(1)的结论,判断一天内的至之间,有多少时间可供冲浪爱好者进行冲浪?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com