精英家教网 > 高中数学 > 题目详情

已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N+
(1)证明:数列{an+1-an }是等比数列;
(2)求数列{an}的通项公式.

解:(1)证明:∵an+2=3an+1-2an
∴an+2-an+1=2(an+1-an
又a1=1,a2=3

∴数列{an+1-an}是以2为 首项,2为公比的等比数列
(2)由(1)知an+1-an=2n
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-1+2n-2+…+2+1
=2n-1
分析:(1)将已知的递推关系变形,利用等比数列的定义,证得数列{an+1-an}成等比数列.
(2)利用等比数列的通项公式求出an+1-an=2n,然后根据an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1求出数列{an}的通项公式.
点评:本题考查证明数列是等比数列常用数列的方法:是定义法与等比中项的方法;注意构造新数列是求数列的通项的常用的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案