【题目】已知数列是等差数列,其前项和为,数列是公比大于0的等比数列,且, , .
(Ⅰ)求数列和的通项公式;
(Ⅱ)令,求数列的前项和为.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是平行四边形, ,侧面底面, , , 分别为的中点,点在线段上.
(Ⅰ)求证: 平面;
(Ⅱ)如果直线与平面所成的角和直线与平面所成的角相等,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】拖延症总是表现在各种小事上,但日积月累,特别影响个人发展.某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下列联表:
有明显拖延症 | 无明显拖延症 | 合计 | |
男 | 35 | 25 | 60 |
女 | 30 | 10 | 40 |
合计 | 65 | 35 | 100 |
(Ⅰ)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为,试求随机变量的分布列和数学期望;
(Ⅱ)若在犯错误的概率不超过的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.
附:独立性检验统计量,其中.
独立性检验临界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是定义在上的奇函数,且.若对任意的, 都有.
(1)用函数单调性的定义证明: 在定义域上为增函数;
(2)若,求的取值范围;
(3)若不等式对所有的 和都恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆与双曲线有共同焦点,且离心率为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设为椭圆的下顶点, 为椭圆上异于的不同两点,且直线与的斜率之积为.
(ⅰ)试问所在直线是否过定点?若是,求出该定点;若不是,请说明理由;
(ⅱ)若为椭圆上异于的一点,且,求的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆: 过椭圆: ()的短轴端点, , 分别是圆与椭圆上任意两点,且线段长度的最大值为3.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作圆的一条切线交椭圆于, 两点,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方体ABCD-A1B1C1D1中,M、N分别是A1B1、B1C1的中点,问:
(1)AM和CN是否是异面直线?说明理由;
(2)D1B和CC1是否是异面直线?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com