精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论在区间上的单调性;

2)若时,,求整数的最小值.

【答案】1)详见解析(2

【解析】

1)分别在三种情况下,根据导函数的正负得到原函数的单调区间;

(2)将问题转化为上恒成立,则,结合零点存在定理可确定的最大值为,利用导数可求得其值域,进而得到整数的最小值.

1)由题意得:

,则

,即时,上单调递增;

,即时,

,解得:

时,

时,;当时,

上单调递减,在上单调递增;

时,

时,;当时,

上单调递增,在上单调递减;

综上所述:当时,上单调递增,在上单调递减;当时,上单调递增;当时,上单调递减,在上单调递增.

2)由得:上恒成立,

,则

,则

在区间上存在零点,

设零点为,则

时,;当时,

上单调递增,在上单调递减,

,则

上单调递增,,即

整数的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:

空调类

冰箱类

小家电类

其它类

营业收入占比

90.10%

4.98%

3.82%

1.10%

净利润占比

95.80%

3.82%

0.86%

则下列判断中不正确的是(

A.该公司2018年度冰箱类电器销售亏损

B.该公司2018年度小家电类电器营业收入和净利润相同

C.该公司2018年度净利润主要由空调类电器销售提供

D.剔除冰箱类销售数据后,该公司2018年度空调类电器销售净利润占比将会降低

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,AB=AD=2BC=2BCADABAD,△PBD为正三角形.且PA=2

1)证明:平面PAB⊥平面PBC

2)若点P到底面ABCD的距离为2E是线段PD上一点,且PB∥平面ACE,求四面体A-CDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从的路径中,最短路径的长度为( )

A. B. C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位奇数,有__________个这样的四位奇数(用数字填写答案).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,过曲线外的一点(其中为锐角)作平行于的直线与曲线分别交于

(Ⅰ) 写出曲线和直线的普通方程(以极点为原点,极轴为 轴的正半轴建系)

)若成等比数列,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在五面体中,.

1)证明:平面平面

2)若是等腰直角三角形,,求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知多面体PABCDE的底面ABCD是边长为2的菱形,底面ABCD,且.

1)证明:平面平面

2)若,求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市在进行创建文明城市的活动中,为了解居民对“创建文明城”的满意程度,组织居民给活动打分(分数为整数,满分100分),从中随机抽取一个容量为120的样本,发现所给数据均在[40100]内.现将这些分数分成以下6组并画出样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形则下列说法中有错误的是(

A.第三组的频数为18

B.根据频率分布直方图估计众数为75

C.根据频率分布直方图估计样本的平均数为75

D.根据频率分布直方图估计样本的中位数为75

查看答案和解析>>

同步练习册答案