【题目】为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据分成,,,,,,组,得到如图所示的频率分布直方图.若尺寸落在区间之外,则认为该零件属“不合格”的零件,其中,分别为样本平均和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).
(1)若一个零件的尺寸是,试判断该零件是否属于“不合格”的零件;
(2)工厂利用分层抽样的方法从样本的前组中抽出个零件,标上记号,并从这个零件中再抽取个,求再次抽取的个零件中恰有个尺寸小于的概率.
【答案】(1)该零件属于“不合格”的零件;(2).
【解析】
(1)先由频率分布直方图中的数据,求出样本平均值,得到,根据题意,即可得出结果;
(2)根据分层抽样的方法得到第一组抽个,记为;第二组抽个,记为,;第三组抽个,记为,,,用列举法列举出总的基本事件,以及满足条件的基本事件,进而可得出结果.
(1)由频率分布直方图可得,该批零件的样本平均值为:
;
则,,,
所以该零件属于“不合格”的零件;
(2)按照分层抽样抽个零件时,第一组抽个,记为;第二组抽个,记为,;第三组抽个,记为,,,
从这个零件中抽取个零件共有种情况,分别为,,,,,,,,,,,,,,.
其中再抽取的个零件中恰有个尺寸小于的有种,分别为,,,,,,,,.
根据古典概型概率公式,可得.
科目:高中数学 来源: 题型:
【题目】对于由有限个自然数组成的集合A,定义集合S(A)={a+b|a∈A,b∈A},记集合S(A)的元素个数为d(S(A)).定义变换T,变换T将集合A变换为集合T(A)=A∪S(A).
(1)若A={0,1,2},求S(A),T(A);
(2)若集合A有n个元素,证明:“d(S(A))=2n-1”的充要条件是“集合A中的所有元素能组成公差不为0的等差数列”;
(3)若A{1,2,3,4,5,6,7,8}且{1,2,3,…,25,26}T(T(A)),求元素个数最少的集合A.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,且经过点,它的一个焦点与抛物线E:的焦点重合,斜率为k的直线l交抛物线E于A、B两点,交椭圆于C、D两点.
(1)求椭圆的方程;
(2)直线l经过点,设点,且的面积为,求k的值;
(3)若直线l过点,设直线,的斜率分别为,,且,,成等差数列,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛,经过初赛、复赛,甲、乙两个代表队(每队人)进入了决赛,规定每人回答一个问题,答对为本队赢得分,答错得分,假设甲队中每人答对的概率均为,乙队中人答对的概率分別为,且各人回答正确与否相互之间没有影响,用表示乙队的总得分.
(1)求的分布列;
(2)求甲、乙两队总得分之和等于分且甲队获胜的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,其左右顶点分别为,,上下顶点分别为,.圆是以线段为直径的圆.
(1)求圆的方程;
(2)若点,是椭圆上关于轴对称的两个不同的点,直线,分别交轴于点,求证:为定值;
(3)若点是椭圆Γ上不同于点的点,直线与圆的另一个交点为.是否存在点,使得?若存在,求出点的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中,真命题是( )
A.和两条异面直线都相交的两条直线是异面直线
B.和两条异面直线都相交于不同点的两条直线是异面直线
C.和两条异面直线都垂直的直线是异面直线的公垂线
D.若、是异面直线,、是异面直线,则、是异面直线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆的离心率,分别是椭圆的左右两个顶点,圆的半径为,过点作圆的切线,切点为,在轴的上方交椭圆于点.
(1)求直线的方程;
(2)求的值;
(3)设为常数,过点作两条互相垂直的直线,分别交椭圆于点,分别交圆于点,记三角形和三角的面积分别为.求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数其中a为常数,设e为自然对数的底数.
(1)当时,求过切点为的切线方程;
(2)若在区间上的最大值为,求a的值;
(3)若不等式恒成立,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com