精英家教网 > 高中数学 > 题目详情

【题目】为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据分成组,得到如图所示的频率分布直方图.若尺寸落在区间之外,则认为该零件属不合格的零件,其中分别为样本平均和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).

1)若一个零件的尺寸是,试判断该零件是否属于不合格的零件;

2)工厂利用分层抽样的方法从样本的前组中抽出个零件,标上记号,并从这个零件中再抽取个,求再次抽取的个零件中恰有个尺寸小于的概率.

【答案】1)该零件属于不合格的零件;(2.

【解析】

1)先由频率分布直方图中的数据,求出样本平均值,得到,根据题意,即可得出结果;

2)根据分层抽样的方法得到第一组抽个,记为;第二组抽个,记为;第三组抽个,记为,用列举法列举出总的基本事件,以及满足条件的基本事件,进而可得出结果.

1)由频率分布直方图可得,该批零件的样本平均值为:

所以该零件属于不合格的零件;

2)按照分层抽样抽个零件时,第一组抽个,记为;第二组抽个,记为;第三组抽个,记为

从这个零件中抽取个零件共有种情况,分别为.

其中再抽取的个零件中恰有个尺寸小于的有种,分别为.

根据古典概型概率公式,可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求在点处的切线方程;

2)若不等式恒成立,求k的取值范围;

3)函数,设,记上得最大值为,当最小时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于由有限个自然数组成的集合A,定义集合S(A)={a+b|a∈A,b∈A},记集合S(A)的元素个数为d(S(A)).定义变换T,变换T将集合A变换为集合T(A)=A∪S(A).

(1)若A={0,1,2},求S(A),T(A);

(2)若集合A有n个元素,证明:“d(S(A))=2n-1”的充要条件是“集合A中的所有元素能组成公差不为0的等差数列”;

(3)若A{1,2,3,4,5,6,7,8}且{1,2,3,…,25,26}T(T(A)),求元素个数最少的集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,且经过点,它的一个焦点与抛物线E的焦点重合,斜率为k的直线l交抛物线EAB两点,交椭圆CD两点.

(1)求椭圆的方程;

(2)直线l经过点,设点,且的面积为,求k的值;

(3)若直线l过点,设直线的斜率分别为,且成等差数列,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛,经过初赛、复赛,甲、乙两个代表队(每队人)进入了决赛,规定每人回答一个问题,答对为本队赢得分,答错得分,假设甲队中每人答对的概率均为,乙队中人答对的概率分別为,且各人回答正确与否相互之间没有影响,用表示乙队的总得分.

(1)求的分布列;

(2)求甲、乙两队总得分之和等于分且甲队获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,其左右顶点分别为,,上下顶点分别为,.圆是以线段为直径的圆.

(1)求圆的方程;

(2)若点,是椭圆上关于轴对称的两个不同的点,直线,分别交轴于点,求证:为定值;

(3)若点是椭圆Γ上不同于点的点,直线与圆的另一个交点为.是否存在点,使得?若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,真命题是(  )

A.和两条异面直线都相交的两条直线是异面直线

B.和两条异面直线都相交于不同点的两条直线是异面直线

C.和两条异面直线都垂直的直线是异面直线的公垂线

D.是异面直线,是异面直线,则是异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆的离心率分别是椭圆的左右两个顶点,圆的半径为,过点作圆的切线,切点为,在轴的上方交椭圆于点.

(1)求直线的方程;

(2)的值;

(3)为常数,过点作两条互相垂直的直线,分别交椭圆于点,分别交圆于点,记三角形和三角的面积分别为.的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中a为常数,设e为自然对数的底数.

1)当时,求过切点为的切线方程;

2)若在区间上的最大值为,求a的值;

3)若不等式恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案