【题目】假设关于某种设备的使用年限 (年)与所支出的维修费用 (万元)有如下统计资料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
已知, .
,
(1)求, ;
(2)若 与具有线性相关关系,求出线性回归方程;
(3)估计使用年限为10年时,维修费用约是多少?
【答案】(1)4,5(2)=1.23x+0.08(3)12.38万元
【解析】
(1)根据公式易得,
(2)根据(1), ,根据最小二乘法做出线性回归方程的系数,再根据样本中心点一定在线性回归直线上,求出的值.写出线性回归方程
(2)根据线性回归方程,,当自变量为10时,代入线性回归方程,求出维修费用,这是一个预报值.
(1)=(2+3+4+5+6)=4,=(2.2+3.8+5.5+6.5+7)=5,
(2)=2×2.2+3×3.8+4×5.5+5×6.5+6×7=112.3,=90
∴b=1.23,a==5﹣1.23×4=0.08.
∴回归直线方程为=1.23x+0.08.
(3)当x=10时,y=1.23×10+0.08=12.38(万元),
即估计使用10年时维修费约为12.38万元.
科目:高中数学 来源: 题型:
【题目】某家具城进行促销活动,促销方案是:顾客每消费满1000元,便可以获得奖券一张,每张奖券中奖的概率为,若中奖,则家具城返还顾客现金1000元,某顾客购买一张价格为3400元的餐桌,得到3张奖券,设该顾客购买餐桌的实际支出为(元);
(1)求的所有可能取值;
(2)求的分布列和数学期望;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,假命题为( )
A. 存在四边相等的四边形不是正方形
B. z1,z2∈C,z1+z2为实数的充分必要条件是z1,z2互为共轭复数
C. 若x,y∈R,且x+y>2,则x,y至少有一个大于1
D. 对于任意n∈N+,都是偶数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上数字是1,3张卡片上数字是2,2张卡片上数字是3.从盒中任取3张卡片.
(1)求所取3张卡片上数字完全相同的概率;
(2)已知取出的一张卡片上数字是1,求3张卡片上数字之和为5的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一台机器在一天内发生故障的概率为p.已知这台机器在3个工作日至少一天不发生故障的概率为0.999.
(1)求p;
(2)若这台机器一周5个工作日不发生故障,可获利5万元;发生一次故障任可获利2.5万元;发生2次故障的利润为0元;发生3次或3次以上故障要亏损1万元.这台机器一周内可能获利的均值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(其中是自然对数的底数, =2.71828…).
(1)当时,过点作曲线的切线,求的方程;
(2)当时,求证;
(3)求证:对任意正整数,都有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示,
x | ﹣1 | 0 | 2 | 4 | 5 |
f(x) | 1 | 2 | 1.5 | 2 | 1 |
下列关于函数f(x)的命题:
①函数f(x)的值域为[1,2];
②如果当x∈[﹣1,t]时,f(x)的最大值为2,那么t的最大值为4;
③函数f(x)在[0,2]上是减函数;
④当1<a<2时,函数y=f(x)﹣a最多有4个零点.
其中正确命题的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sin θ,θ∈[0,2π).
(1)求曲线C的直角坐标方程;
(2)在曲线C上求一点D,使它到直线l:的距离最短,并求出点D的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
(1)若,过点的直线交曲线于两点,且,求直线的方程;
(2)若曲线表示圆时,已知圆与圆交于两点,若弦所在的直线方程为, 为圆的直径,且圆过原点,求实数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com