精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若是函数的极值点,求曲线在点处的切线方程;

2)求函数的单调区间;

3)已知,当,试比较的大小,并给予证明.

【答案】1;(2)详见解析;(3,证明见解析.

【解析】

1)根据极值点定义可构造方程求得,根据导数几何意义可求得结果;

2)分别在两种情况下,根据导函数的正负得到原函数的单调区间;

(3)令,可求得;令,利用导数和零点存在定理可确定,即的正负,从而得到的单调性和最值,通过最值可知,进而得到大小关系.

1)由题意得:

的极值点,,解得:

,又

所求切线方程为,即.

2)由题意得:定义域为

时,恒成立,的单调递增区间为,无单调递减区间;

时,令,解得:

时,;当时,

的单调递增区间为;单调递减区间为

综上所述:当时,的单调递增区间为,无单调递减区间;当时,的单调递增区间为,单调递减区间为.

3)令

,则

函数上单调递增,

存在唯一零点,使得

时,;当时,

时,;当时,

函数上单调递减,在上单调递增,

,即

上恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ) 求曲线相邻两个对称中心之间的距离;

(Ⅱ) 若函数上单调递增, 求的最大值 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》卷第五《商功》中,有“贾令刍童,上广一尺,袤二尺,下广三尺,袤四尺,高一尺。”,意思是:“假设一个刍童,上底面宽1尺,长2尺;下底面宽3尺,长4尺,高1尺(如图)。”(注:刍童为上下底面为相互平行的不相似长方形,两底面的中心连线与底面垂直的几何体),若该几何体所有顶点在一球体的表面上,则该球体的表面积为( )

A. 平方尺 B. 平方尺 C. 平方尺 D. 平方尺

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)在R上存在导数f'x),xR,有f-x+fx=x2,在(0,+∞)上,f'x)<x,若f6-m-fm-18+6m≥0,则实数m的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.

1)已知,利用上述性质,求函数的单调区间和值域;

2)对于(1)中的函数和函数,若对任意,总存在,使得成立,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为数列的前n项和,且,当时,.

(I)证明:数列为等比数列;

(Ⅱ)记,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为了解学生对学校食堂服务的满意度,随机调查了50名男生和50名女生,每位学生对食堂的服务给出满意或不满意的评价,得到如图所示的列联表.经计算的观测值,则可以推断出(

满意

不满意

30

20

40

10

0.100

0.050

0.010

2.706

3.841

6.635

A.该学校男生对食堂服务满意的概率的估计值为

B.调研结果显示,该学校男生比女生对食堂服务更满意

C.有95%的把握认为男、女生对该食堂服务的评价有差异

D.有99%的把握认为男、女生对该食堂服务的评价有差异

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,△ABC是正三角形,AD=CD

(1)证明:ACBD

(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AEEC,求四面体ABCE与四面体ACDE的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(1)讨论函数在区间上的极值点的个数;

(2)已知对任意的恒成立,求实数k的最大值.

查看答案和解析>>

同步练习册答案