精英家教网 > 高中数学 > 题目详情
1.某校高三期末统一测试,随机抽取一部分学生的数学成绩分组统计如下表:
分组频数频率
(0,30]30.03
(30,60]30.03
(60,90]370.37
(90,120]mn
(120,150]150.15
合计MN
(Ⅰ)若全校参加本次考试的学生有600人,试估计这次测试中我区成绩在90分以上的人数;
(Ⅱ)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分的概率.

分析 (I)根据频率公式,结合表中第一组数据的频率算出总数M.再用减法可得第五组的频数m,由此可算出第五组的频率n的值,而N是各组的频率之和,显然为1.90分以上的人有两组,分别是第五、六两组,算出它们的频率之和为0.57,由此不难估算出这次测试中我区成绩在90分以上的人数.
(Ⅱ)根据题意,列出从不超过60分的6人中,任意抽取2人的结果有15种,而分数不超过30分的结果有3种,再结合等可能事件的概率公式,可得要求的概率.

解答 解:(I)由频率分布表,得总数M=$\frac{3}{0.03}$=100,…(1分)
所以m=100-(3+3+37+15)=42,…(2分)
得第四组的频率n=$\frac{42}{100}$=0.42,
N=0.03+0.03+0.37+0.42+0.15=1.  …(3分)
由题意,90分以上的人分别在第五组和第六组,
它们的频率之和为0.42+0.15=0.57,
∴全区90分以上学生估计为0.57×600=342人.…(7分)
(Ⅱ)设考试成绩在(0,30]内的3人分别为A、B、C;
考试成绩在(30,60]内的3人分别为a、b、c,
从不超过60分的6人中,任意抽取2人的结果有:
(A,B),(A,C),(A,a),(A,b),(A,c),
(B,C),(B,a),(B,b),(B,c),(C,a),
(C,b),(C,c),(a,b),(a,c),(b,c)
共有15个.…(10分)
设抽取的2人的分数均不大于30分的事件为事件D.
则事件D含有3个结果:(A,B),(A,C),(B,C)   …(11分)
∴被选中2人分数不超过30分的概率为P(D)=$\frac{3}{15}$=$\frac{1}{5}$.                              …(13分)

点评 本题给出频率分布表,要我们计算其中的频率和频数,并算出被选中2人分数不超过30分的概率.着重考查了频率分布直方图的认识和等可能性事件的概率等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知sinα=$\frac{2}{3}$,cosβ=-$\frac{3}{4}$,且α、β都是第二象限角,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=e|x|+x2,则使得f(x)>f(2x-1)成立的x的取值范围是(  )
A.$({\frac{1}{3},1})$B.$({-∞,\frac{1}{3}})∪({1,+∞})$C.(-$\frac{1}{3}$,$\frac{1}{3}$)D.$({-∞,-\frac{1}{3}})∪({\frac{1}{3},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图为函数y=Asin(ωx+ϕ)+c(A>0,ω>0,ϕ>0)图象的一部分,求此函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若点P(1,1)在圆x2+y2+(λ-1)x+2λy+λ=0外,则λ的取值范围是{λ|$\frac{1}{5}>λ>-\frac{1}{4}$或λ>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,若直线l的极坐标方程为psin(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(1)把直线l的极坐标方程化为直角坐标系方程;
(2)已知P为椭圆C:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{9}=1$上一点,求P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.椭圆2x2+3y2=1的焦点坐标为$(±\frac{{\sqrt{6}}}{6},0)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.集合S={x|x-4|<2,x∈N+},T={4,7,8},则S∪T=(  )
A.{4}B.{3,5,7,8}C.{3,4,5,7,8}D.{3,4,4,5,7,8}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C的圆心在坐标原点,且与直线l1:x-y-2$\sqrt{2}$=0相切
(1)求直线l2:4x-3y+5=0被圆C所截得的弦AB的长.
(2)若与直线l1垂直的直线l与圆C交于不同的两点P,Q,若∠POQ为钝角,求直线l纵截距的取值范围.
(3)过点G(1,3)作两条与圆C相切的直线,切点分别为M,N求直线MN的方程.

查看答案和解析>>

同步练习册答案