精英家教网 > 高中数学 > 题目详情
1.求函数f(x)=3|x|的单调区间.

分析 结合绝对值函数的性质进行求解即可.

解答 解:当x≥0时,f(x)=3x为增函数,
当x<0时,f(x)=-3x为减函数,
则函数的单调递增区间为为[0,+∞),单调递减区间为(-∞,0].

点评 本题主要考查函数单调性以及单调区间的求解,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知△ABC三条边长分别为a=t2+3,b=-t2-2t+3,c=4t则最大的内角度数为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若a2+b2=1,则-$\frac{1}{2}$≤ab≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$|\overrightarrow{OA}|=1$,$|\overrightarrow{OB}|=4$,$\overrightarrow{OA}•\overrightarrow{OB}=2$,$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}$,则△ABC的面积是.
A.1B.2C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A={y|y=x2,x∈R},B={x|x>a},若x∈B是x∈A的充分非必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知y=kx+4,定义域为(1,4),求值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f($\frac{2}{x}$+1)=$\sqrt{x}$.则f(x)=$\frac{\sqrt{2x-2}}{x-1}$,x≠1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.化简cos4$θ-\frac{1}{4}co{s}^{2}2θ-\frac{1}{2}cos2θ$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于定义域为D的函数f(x)同时满足条件:
①常数a,b满足a<b,区间[a,b]⊆D
②使f(x)在[a,b]上的值域为[ka,kb],(k∈N*),那么我们把f(x)叫做[a,b]上的“k级矩形”函数
(1)设函数f(x)=x3[a,b]上的“1级矩形”函数,求常数a,b的值;
(2)是否存在常数a,b与正数k,使函数g(x)=$\frac{1}{x+2}$(x>-2)在区间[a,b]上的是“k级矩形”函数?若存在,求出a,b及k的值,若不存在,说明理由
(3)设h(x)=-2x2-x是[a,b]上的“3级矩形”函数,求出常数a,b的值.

查看答案和解析>>

同步练习册答案