分析 (Ⅰ)根据等差数列的通项公式建立方程组关系求出首项和公差即可求数列{an}的通项公式;
(Ⅱ)根据数列的通项公式,求出an=23-3n≥0得值,即可得到结论.
解答 解:(Ⅰ)∵等差数列{an}的公差d<0,a3a5=112,a4=11.
∴(a4-d)(a4+d)=112,
即(11-d)(11+d)=112,
则121-d2=112,
即d2=9,d=-3,
∵a4=a1+3d=11,
∴a1=20,
则数列{an}的通项公式an=20-3(n-1)=23-3n;
(Ⅱ)∵an=23-3n,
∴由an=23-3n≥0得n≤$\frac{23}{3}$;
即当1≤n≤7时,an>0,
当n≥8时,an<0,
∴当n=7时,Sn取得最大值,求此最大值S7=$\frac{7(20+23-21)}{2}$=77.
点评 本题主要考查等差数列的通项公式以及前n项和的性质,根据方程组求出首项和公差是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{24}$ | B. | $-\frac{7}{24}$ | C. | $\frac{24}{7}$ | D. | $-\frac{24}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com