精英家教网 > 高中数学 > 题目详情

【题目】某射击运动员进行射击训练,前三次射击在靶上的着弹点刚好是边长为的等边三角形的三个顶点.

(Ⅰ)第四次射击时,该运动员瞄准区域射击(不会打到外),则此次射击的着弹点距的距离都超过的概率为多少?(弹孔大小忽略不计)

(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间内,调整一下后,又连打三枪,其成绩(环数)都在区间内.现从这次射击成绩中随机抽取两次射击的成绩(记为)进行技术分析.求事件“”的概率.

【答案】(I)1-(II)

【解析】

I)用三角形的面积减去三个扇形的面积,得到“着弹点距的距离都超过”的点的面积,用这个面积除以三角形的面积得到所求的概率.II)利用列举法列出所有的基本事件,进而得到符合题意的事件,利用古典概型概率计算公式,求得所求的概率.

(Ⅰ)因为着弹点若与的距离都超过cm,

则着弹点就不能落在分别以为中心,半径为cm的三个扇形区域内,

只能落在图中阴影部分内.

因为

图中阴影部分的面积为

故所求概率为

(Ⅱ)前三次射击成绩依次记为,后三次成绩依次记为,从这次射击成绩中随机抽取两个,基本事件是:

,共个,其中可使发生的是后个基本事件.故.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题是( )

A. ,则为实数的充要条件是为共轭复数;

B. “直线与曲线C相切”是“直线与曲线C只有一个公共点”的充分不必要条件;

C. “若两直线,则它们的斜率之积等于”的逆命题;

D. 是R上的可导函数,“若的极值点,则”的否命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德国数学家科拉茨1937年提出一个著名的猜想:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定.现在请你研究:如果对正整数(首项)按照上述规则进行变换后的第9项为1(注:1可以多次出现),则的所有不同值的个数为( )

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】青少年“心理健康”问题越来越引起社会关注,某校对高一600名学生进行了一次“心理健康”知识测试,并从中抽取了部分学生的成绩(得分取正整数,满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图。

分组

频数

频率

[50,60)

2

0.04

[60,70)

8

0.16

[70,80)

10

[80,90)

[90,100]

14

0.28

合计

1.00

                                                             

(1)填写答题卡频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;

(2)请你估算学生成绩的平均数及中位数。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在.

(1)求角的大小

(2)设数列满足项和为的值.

【答案】(1);(2).

【解析】试题分析:

(1)由题意结合三角形内角和为可得.由余弦定理可得,,结合勾股定理可知为直角三角形,.

(2)结合(1)中的结论可得 . 据此可得关于实数k的方程解方程可得.

试题解析:

(1)由已知,又,所以.又由

所以,所以

所以为直角三角形,.

(2) .

所以 ,得

,所以,所以,所以.

型】解答
束】
18

【题目】已知点是平行四边形所在平面外一点如果.(1)求证:是平面的法向量

(2)求平行四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆直线.

(1)求与圆相切且与直线垂直的直线方程

(2)在直线为坐标原点),存在定点(不同于点),满足:对于圆上任一点都有为一常数试求所有满足条件的点的坐标.

【答案】(1)(2)答案见解析.

【解析】试题分析:

(1)设所求直线方程为利用圆心到直线的距离等于半径可得关于b的方程,解方程可得则所求直线方程为

(2)方法1:假设存在这样的点由题意可得,然后证明为常数为即可.

方法2:假设存在这样的点,使得为常数,则据此得到关于的方程组,求解方程组可得存在点对于圆上任一点,都有为常数.

试题解析:

(1)设所求直线方程为,即

∵直线与圆相切,∴,得

∴所求直线方程为

(2)方法1:假设存在这样的点

为圆轴左交点时,

为圆轴右交点时,

依题意,,解得,(舍去),或.

下面证明点对于圆上任一点,都有为一常数.

,则

从而为常数.

方法2:假设存在这样的点,使得为常数,则

,将代入得,

,即

恒成立,

,解得(舍去),

所以存在点对于圆上任一点,都有为常数.

点睛:求定值问题常见的方法有两种:

(1)从特殊入手,求出定值,再证明这个值与变量无关.

(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.

型】解答
束】
22

【题目】已知函数的导函数为其中为常数.

(1)当的最大值并推断方程是否有实数解

(2)若在区间上的最大值为-3,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量(百件)与销售单价x(元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.

(1)把y表示为x的函数;

(2)当销售价为每件50元时,该店正好收支平衡(即利润为零),求该店的职工人数;

(3)若该店只有20名职工,问销售单价定为多少元时,该专卖店可获得最大月利润?(注:利润=收入-支出)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 ,点,以线段为直径的圆内切于圆,记点的轨迹为

(1)求曲线的方程;

(2)直线交圆两点,当的中点时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过圆 上的点 轴的垂线,垂足为 ,点 满足 .当 上运动时,记点 的轨迹为 .

(1)求 的方程;

(2)过点 的直线交于 两点,与圆 交于 两点,求 的取值范围.

查看答案和解析>>

同步练习册答案