精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的离心率为,过其右焦点作斜率为的直线,交双曲线的两条渐近线于两点(点在轴上方),则( )

A.B.C.D.

【答案】B

【解析】

由双曲线的离心率可得ab,求得双曲线的渐近线方程,设右焦点为(c0),过其右焦点F作斜率为2的直线方程为y2xc),联立渐近线方程,求得BC的坐标,再由向量共线定理,可得所求比值.

由双曲线的离心率为,可得ca

即有ab,双曲线的渐近线方程为y=±x

设右焦点为(c0),过其右焦点F作斜率为2的直线方程为y2xc),

yxy2xc),可得B2c2c),

y=﹣xy2xc)可得C),

λ,即有02cλ0),

解得λ3,即则3

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知一定点,及一定直线,以动点为圆心的圆过点,且与直线相切

(Ⅰ)求动点的轨迹的方程

(Ⅱ)设在直线上,直线分别与曲线相切于为线段的中点求证:且直线恒过定点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,设函数

1)若函数的图象关于直线对称,且时,求函数的单调增区间;

2)在(1)的条件下,当时,函数有且只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为

1)求实数的取值范围;

2)设实数的最大值,若实数满足,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示一位骑自行车和一位骑摩托车的旅行者在相距80 km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:

①骑自行车者比骑摩托车者早出发3 h,晚到1 h

②骑自行车者是变速运动,骑摩托车者是匀速运动;

③骑摩托车者在出发1.5 h后追上了骑自行车者;

④骑摩托车者在出发1.5 h后与骑自行车者速度一样.

其中,正确信息的序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用五点法画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

1)请将上表数据补充完整;函数的解析式为 (直接写出结果即可);

2)根据表格中的数据作出一个周期的图象;

3)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点为椭圆上一点.

1)求椭圆C的方程;

2)已知两条互相垂直的直线经过椭圆的右焦点,与椭圆交于四点,求四边形面积的的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为

1)求实数的取值范围;

2)设实数的最大值,若实数满足,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在地面上同一地点观测远方匀速垂直上升的热气球,在上午10点整热气球的仰角是到上午10点20分的仰角变成.请利用下表判断到上午11点整时,热气球的仰角最接近哪个度数( )

0.5

0.559

0.629

0.643

0.656

0.669

0.682

0.695

0.707

0.866

0.829

0.777

0.766

0.755

0.743

0.731

0.719

0.707

0.577

0.675

0.810

0.839

0.869

0.900

0.933

0.966

1.0

A. B. C. D.

查看答案和解析>>

同步练习册答案