精英家教网 > 高中数学 > 题目详情

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到如表(单位:人):

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(Ⅱ)①现从所抽取的30岁以上的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出3人赠送优惠券,求选出的3人中至少有2人经常使用共享单车的概率.

②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用共享单车的人数为,求的数学期望和方差.

参考公式:,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】(Ⅰ)能在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关;(Ⅱ)①;②

【解析】

(Ⅰ)先根据公式计算卡方,再对照数据确定犯错误的概率,(Ⅱ)①先根据分层抽样确定人数,再根据古典概型概率公式求概率,②先确定随机变量服从二项分布,再根据二项分布得分布列与数学期望.

(Ⅰ)由列联表可知,.

∴能在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关.

(Ⅱ)①依题意,可知所抽取的10名30岁以上网民中,经常使用共享单车的有(人),

偶尔或不用共享单车的有(人).

则选出的3人中至少2人经常使用共享单车的概率为

②由列联表,可知抽到经常使用共享单位的频率为

将频率视为概率,即从市市民中任意抽取1人,

恰好抽到经常使用共享单车的市民的概率为

由题意得,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线,且三点中恰有两点在抛物线上,另一点是抛物线的焦点.

(1)求证:三点共线;

(2)若直线过抛物线的焦点且与抛物线交于两点,点轴的距离为,点轴的距离为,求的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足,若恒成立,则实数的取值范围为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,过点的直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为,记直线与曲线分别交于两点.

(1)求曲线的直角坐标方程;

(2)证明:成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】目前共享单车基本覆盖饶城市区,根据统计,市区所有人骑行过共享单车的人数已占,骑行过共享单车的人数中,有是学生(含大中专、高职及中学生),若市区人口按40万计算,学生人数约为9.6万.

(1)任选出一名学生,求他(她)骑行过共享单车的概率;

(2)随着单车投放数量增加,乱停乱放成为城市管理的问题,如表是本市某组织累计投放单车数量与乱停乱放单车数量之间关系图表:

累计投放单车数量

100000

120000

150000

200000

230000

乱停乱放单车数量

1400

1700

2300

3000

3600

计算关于的线性回归方程(其中精确到值保留三位有效数字),并预测当时,单车乱停乱放的数量;

(3)已知信州区、广丰区、上饶县、经开区四区中,其中有两个区的单车乱停乱放数量超过标准,在“大美上饶”活动中,检查组随机抽取两个区调查单车乱停乱放数量,表示“单车乱停乱放数量超过标准的区的个数”,求的分布列和数学期望.

参考公式和数据:回归直线方程中的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是直角梯形,,侧面是等腰直角三角形,,平面平面,点分别是棱上的点,平面平面.

(1)确定点的位置,并说明理由;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一布袋中装有个小球,甲,乙两个同学轮流且不放回的抓球,每次最少抓一个球,最多抓三个球,规定:由乙先抓,且谁抓到最后一个球谁赢,那么以下推断中正确的是( )

A. ,则乙有必赢的策略B. ,则甲有必赢的策略

C. ,则甲有必赢的策略D. ,则乙有必赢的策略

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标坐标系中,曲线的参数方程为为参数),以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为.

(1)求曲线的普通方程;

(2)若与曲线相切,且与坐标轴交于两点,求以为直径的圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋里装有个白球和个红球,从口袋中任取个球.

(1)共有多少种不同的取法?

(2)其中恰有一个红球,共有多少种不同的取法?

(3)其中不含红球,共有多少种不同的取法?

查看答案和解析>>

同步练习册答案