精英家教网 > 高中数学 > 题目详情

【题目】已知数集,其中,且,若对两数中至少有一个属于,则称数集具有性质.

1)分别判断数集与数集是否具有性质,说明理由;

2)已知数集具有性质,判断数列是否为等差数列,若是等差数列,请证明;若不是,请说明理由.

【答案】1)数集不具有性质,数集具有性质,理由见解析;(2)是等差数列,证明见解析

【解析】

(1)根据性质的定义逐个求差判断即可.

(2)根据性质的定义可先判断出,再判断可得,继而得到即可证明数列,,,为等差数列.

解:(1)由于都不属于集合,

所以该集合不具有性质

由于都属于集合,

所以该数集具有性质.

2)∵具有性质,所以中至少有一个属于,

,有,故,∴,故.

,∴,故.

具有性质知,,

又∵,

,,,,,

①,

知,,,,均不属于,

具有性质,,,,均属于,

,而,

,,,,②,

由①②可知,

.

,,,构成等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,两两垂直,四边形是边长为2的正方形,ACDGEF,且.

1)证明:平面.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:,现从数列的前2020项中随机抽取1项,则该项不能被3整除的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在梯形中,,点在线段上,且满足,将沿翻折,使翻折后的二面角的余弦值为,如图2

1)求证:

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线E的极坐标方程为,直线l的参数方程为(t为参数).P为曲线E上的动点,点Q为线段OP的中点.

1)求点Q的轨迹(曲线C)的直角坐标方程;

2)若直线l交曲线CAB两点,点恰好为线段AB的三等分点,求直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的最小值;

2)若,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直线交抛物线两点(点在点左侧),过线段(两端点除外)上的任意一点作直线,使得直线与抛物线在点处的切线平行,设直线与抛物线交于两点.

1)记直线的斜率分别为,证明:

2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2014年非洲爆发了埃博拉病毒疫情,在疫情结束后,当地防疫部门做了一项回访调查,得到如下结果,

患病

不患病

有良好卫生习惯

20

180

无良好卫生习惯

80

220

1)结合上面列联表,是否有的把握认为是否患病与卫生习惯有关?

2)现从有良好卫生习惯且不患病的180人中抽取5人,再从这5人中选两人给市民做健康专题报告,求至少有一人被选中的概率.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数fx)=2sinxsinxcosx)﹣1图象向右平移个单位得函数gx)的图象,则下列命题中正确的是(  )

A.fx)在()上单调递增

B.函数fx)的图象关于直线x对称

C.gx)=2cos2x

D.函数gx)的图象关于点(0)对称

查看答案和解析>>

同步练习册答案