【题目】设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x﹣1),已知当x∈[0,1]时,f(x)=( )1﹣x , 则
①2是函数f(x)的一个周期;
②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;
③函数f(x)的最大值是1,最小值是0;
④x=1是函数f(x)的一个对称轴;
⑤当x∈(3,4)时,f(x)=( )x﹣3 .
其中所有正确命题的序号是 .
【答案】①②④⑤
【解析】解:∵f(x+1)=f(x﹣1),
∴f(x+2)=f[(x+1)+1]=f[(x+1)﹣1]=f(x),
即①2是函数f(x)的一个周期,正确;
当x∈[0,1]时,f(x)=( )1﹣x为增函数;
由函数f(x)是定义在R上的偶函数,
可得:当x∈[﹣1,0]时,f(x)为减函数;
再由函数的周期为2,可得:
②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,正确;
由②得:当x=2k,k∈Z时,函数取最小值 ,
当x=2k+1,k∈Z时,函数取最大值1,
故③函数f(x)的最大值是1,最小值是0,错误;
由②得:④x=k,k∈Z均为函数图象的对称轴,
故④x=1是函数f(x)的一个对称轴,正确;
⑤当x∈(3,4)时,4﹣x=(0,1),
即f(4﹣x)=f(2﹣x)=f(﹣x)=f(x)=( )1﹣(4﹣x)=( )x﹣3 ,
即④f(x)=( )x﹣3 . 正确
故答案为:①②④⑤
根据已知,确定函数f(x)的周期性,单调性,奇偶性,对称性,最值等,进而判断各个命题的真假,可得答案.
科目:高中数学 来源: 题型:
【题目】如图,点C在以AB为直径的圆O上,PA垂直于圆O所在的平面,G为△AOC的重心.
(1)求证:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,求二面角A﹣OP﹣G的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学为调查来自南方和北方的同龄大学生的身高差异,从2016级的年龄在18~19岁之间的大学生中随机抽取了来自南方和北方的大学生各10名,测量他们的身高,量出的身高如下(单位:cm):
南方:158,170,166,169,180,175,171,176,162,163.
北方:183,173,169,163,179,171,157,175,184,166.
(1)根据抽测结果,画出茎叶图,对来自南方和北方的大学生的身高作比较,写出统计结论.
(2)设抽测的10名南方大学生的平均身高为x cm,将10名南方大学生的身高依次输入如图所示的程序框图进行运算,问输出的s大小为多少?并说明s的统计学意义.
(3)为进一步调查身高与生活习惯的关系,现从来自南方的这10名大学生中随机抽取2名身高不低于170 cm的学生,求身高为176 cm的学生被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分16分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为()千元.设该容器的建造费用为千元.
(1)写出关于的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足向量 =(cosA,cosB), =(a,2c﹣b), ∥ .
(1)求角A的大小;
(2)若a=2 ,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,真命题是( )
A.x∈R,2x>x2
B.若a>b,c>d,则 a﹣c>b﹣d
C.x∈R,ex<0
D.ac2<bc2是a<b的充分不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示:
分类 | 杂质高 | 杂质低 |
旧设备 | 37 | 121 |
新设备 | 22 | 202 |
根据以上数据,则( )
A. 含杂质的高低与设备改造有关
B. 含杂质的高低与设备改造无关
C. 设备是否改造决定含杂质的高低
D. 以上答案都不对
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD是直角梯形,∠BAD=∠ADC=90°,E为CB的中点,AB=PA=AD=2CD,则AP与平面PDE所成角的正弦值为 ( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com