精英家教网 > 高中数学 > 题目详情

【题目】已知中,角所对的边分别为,满足

1)求的大小;

2)如图,,在直线的右侧取点,使得.当角为何值时,四边形面积最大.

【答案】12

【解析】

1)(法一)根据正弦定理利用“边化角”的方法将原式化为,利用两角和的正弦公式进行化简,结合三角形的性质即可求得的大小;(法二)根据余弦定理利用“角化边”的方法将原式化为,化简得出的值,即可得出的大小.

(2)根据题意,设,根据余弦定理表达出,再根据三角形的面积公式,分别表达出,从而得到四边形面积的函数,利用三角函数的性质即可求出面积的最大值.

1)(法一):在中,由正弦定理得

,故

(法二)在中,由余弦定理得

2)由(1)知,为等边三角形,

,则在中,由余弦定理得

四边形的面积

时,

所以当时,四边形的面积取得最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD.其中AB=3百米,AD=百米,且△BCD是以D为直角顶点的等腰直角三角形.拟修建两条小路AC,BD(路的宽度忽略不计),设∠BAD=()

(1)当cos时,求小路AC的长度;

(2)当草坪ABCD的面积最大时,求此时小路BD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,底面是边长为2的正三角形, .

(1)求证:平面平面

(2)若求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,分别为棱的中点.已知.

求证:(1)直线PA平面DEF;

(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 是等边三角形, .

(1)求证:平面平面

(2)若直线所成角的大小为60°,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆:,直线.

(1)若直线与圆相切,的值;

(2)若直线与圆交于不同的两点,当∠AOB为锐角时,k的取值范围;

(3),是直线上的动点,作圆的两条切线,切点为,探究:直线是否过定点。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级期末考试的学生中抽出 6 名学生,其成绩(均为整数)的频率分布直方图如图所示.

1)估计这次考试的中位数

2)假设分数在的学生的成绩都不相同,且都在分以上,现用简单随机抽样方法,从 个数中任取 个数,求这 个数恰好是两个学生的成绩的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在长方体ABCD-A1B1C1D1中,AB=2,BC=2,CC1=3,长方体每条棱所在直线与过点C1的平面α所成的角都相等,则直线AC与平面α所成角的余弦值为(  )

A. 1 B. 0 C. 0 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个几何体的平面展开图,其中四边形ABCD为正方形,△PDC, △PBC, △PAB, △PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为 ( )

A. 平面BCD⊥平面PAD B. 直线BE与直线AF是异面直线

C. 直线BE与直线CF共面 D. 面PAD与面PBC的交线与BC平行

查看答案和解析>>

同步练习册答案