A. | AB•AC=$\sqrt{2}$AB+AC | B. | AB+AC=$\sqrt{2}$AB•AC | C. | AB•AC=$\sqrt{3}$AB+AC | D. | AB+AC=$\sqrt{3}$AB•AC |
分析 令AB=3k,AC=2k,在△ABC中,由余弦定理得BC、cosB 由∠BAC的平分线交边BC于点D的DB,在△ABD中,由余弦定理得AD2=AB2+BD2-2AB•BDcosB,解得k即可.
解答 解:如图所示,令AB=3k,AC=2k,在△ABC中,由余弦定理得BC2=AC2+AB2-2AB•ACcosA=7k2.
⇒BC=$\sqrt{7}k$.
由余弦定理得AC2=BC2+AB2-2AB•BCcosB⇒cosB=$\frac{2}{\sqrt{7}}$.
∵∠BAC的平分线交边BC于点D∴$\frac{AB}{AC}=\frac{BD}{DC}=\frac{3}{2}$,∴DB=$\frac{3}{5}\sqrt{7}k$.
在△ABD中,由余弦定理得AD2=AB2+BD2-2AB•BDcosB=1,解得k=$\frac{5}{6\sqrt{3}}$
经验证D满足,故选D.
点评 本题考查了解三角形,余弦定理的运用是关键,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 32+8$\sqrt{6}$ | B. | 48+8$\sqrt{6}$ | C. | 48+8$\sqrt{3}$ | D. | 44+8$\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若“p或q”为真,则“p且q”也为真 | |
B. | 命题“若x=2,则x2-5x+6=0”的否命题是“若x=2,则x2-5x+6≠0” | |
C. | 已知a,b∈R,命题“若a>b,则|a|>|b|”的逆否命题是真命题 | |
D. | 已知a,b,m∈R,命题“若am2<bm2,则a<b”为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{1}{6}$ | B. | $\frac{1}{6}$ | C. | $-\frac{1}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com