精英家教网 > 高中数学 > 题目详情
已知f(x)=
x2+1(x≤0)
1(x>0)
,则满足不等式f(1-x2)<f(2x)的x的取值范围是
(-1-
2
,0)
(-1-
2
,0)
分析:根据已知中的函数解析式,结合二次函数的图象和性质可分析出函数的单调性,进而可得1-x2与2x必有一个在Y轴的右侧,且1-x2>2x,进而构造不等式组,解不等式组可得答案.
解答:解:∵f(x)=
x2+1(x≤0)
1(x>0)

故函数在区间(-∞,0]上为减函数,在(0,+∞)上为常数函数
则不等式f(1-x2)<f(2x)可化为
1-x2>2x
2x<0

解得x∈(-1-
2
,0)

故答案为:(-1-
2
,0)
点评:本题考查的知识点是函数单调性的性质,其中根据已知分析出函数的单调性,并转化为不等式组是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2-(a+
1
a
)x+1

(Ⅰ)当a=
1
2
时,解不等式f(x)≤0;
(Ⅱ)若a>0,解关于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2(x>0)
e(x=0)
0(x<0)
,则f{f[f(-2)]}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2,x>0
f(x+1),x≤0
则f(2)+f(-1)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对定义域中任意x,均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称;
(1)已知f(x)=
x2-mx+1x
的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=-2x-n(x-1),求函数g(x)在x∈(-∞,0)上的解析式;
(3)在(1)(2)的条件下,若对实数x<0及t>0,恒有g(x)+tf(t)>0,求正实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2,g(x)=(
1
2
)x-m
,若对任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是
m
1
4
m
1
4

查看答案和解析>>

同步练习册答案