精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,直线与椭圆在第一象限内的交点是,且轴,.

1)求椭圆的方程;

2)是否存在斜率为的直线与以线段为直径的圆相交于两点,与椭圆相交于两点,且?若存在,求出直线的方程;若不存在,说明理由.

【答案】1;(2)存在,

【解析】

1)由题意,先设,得到,根据,求出,再由点在椭圆上,得到,求解,即可得出结果;

2)先假设存在斜率为的直线,设为,由(1)得到以线段为直径的圆为,根据点到直线距离公式,以及圆的弦长公式得到,联立直线与椭圆方程,根据韦达定理与弦长公式,得到,再由求出,即可得出结果.

1)设

由题意,得

因为

解得,则

又点在椭圆上,所以,解得.

所以椭圆E的方程为

2)假设存在斜率为的直线,设为

由(1)知,

所以以线段为直径的圆为.

由题意,圆心到直线的距离,得.

消去y

整理得.

由题意,

解得,又,所以.

整理得

解得,或.

,所以,即.

故存在符合条件的直线,其方程为,或.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系中,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为:,经过点,倾斜角为的直线l与曲线C交于AB两点

I)求曲线C的直角坐标方程和直线l的参数方程;

)求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面分别是的中点.

(1)求三棱锥的体积;

(2)若异面直线所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线为公海与领海的分界线,一艘巡逻艇在原点处发现了北偏东 海面上处有一艘走私船,走私船正向停泊在公海上接应的走私海轮航行,以便上海轮后逃窜.已知巡逻艇的航速是走私船航速的2倍,且两者都是沿直线航行,但走私船可能向任一方向逃窜.

1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;

2)若与公海的最近距离20海里,要保证在领海内捕获走私船,则之间的最远距离是多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形中,相交于点,将沿折起,使顶点至点,在折起的过程中,下列结论正确的是( )

A.B.存在一个位置,使为等边三角形

C.不可能垂直D.直线与平面所成的角的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx),gx)满足关系gx)=fxfx),其中α是常数.

(1)设fx)=cosx+sinx,求gx)的解析式;

(2)设计一个函数fx)及一个α的值,使得

(3)当fx)=|sinx|+cosx时,存在x1x2R,对任意xRgx1)≤gx)≤gx2)恒成立,求|x1-x2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,当时,,当时,,若直线与函数的图象恰有7个不同的公共点,则实数的取值范围为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)若,设,若对任意恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出定理:在圆锥曲线中,是抛物线的一条弦,的中点,过点且平行于轴的直线与抛物线的交点为.两点纵坐标之差的绝对值,则的面积,试运用上述定理求解以下各题:

1)若所在直线的方程为的中点,过且平行于轴的直线与抛物线的交点为,求

2)已知是抛物线的一条弦,的中点,过点且平行于轴的直线与抛物线的交点为分别为的中点,过且平行于轴的直线与抛物线分别交于点,若两点纵坐标之差的绝对值,求

3)请你在上述问题的启发下,设计一种方法求抛物线:与弦围成成的“弓形”的面积,并求出相应面积.

查看答案和解析>>

同步练习册答案