【题目】已知椭圆的左、右焦点分别为,,直线与椭圆在第一象限内的交点是,且轴,.
(1)求椭圆的方程;
(2)是否存在斜率为的直线与以线段为直径的圆相交于,两点,与椭圆相交于,两点,且?若存在,求出直线的方程;若不存在,说明理由.
【答案】(1);(2)存在, 或
【解析】
(1)由题意,先设,,得到,根据,求出,,再由点在椭圆上,得到,求解,即可得出结果;
(2)先假设存在斜率为的直线,设为,由(1)得到以线段为直径的圆为,根据点到直线距离公式,以及圆的弦长公式得到,联立直线与椭圆方程,根据韦达定理与弦长公式,得到,再由求出,即可得出结果.
(1)设,,
由题意,得
因为
解得,则,
又点在椭圆上,所以,解得.
所以椭圆E的方程为;
(2)假设存在斜率为的直线,设为,
由(1)知,,
所以以线段为直径的圆为.
由题意,圆心到直线的距离,得.
,
由消去y,
整理得.
由题意,,
解得,又,所以.
设,
则
,
若,
则
整理得,
解得,或.
又,所以,即.
故存在符合条件的直线,其方程为,或.
科目:高中数学 来源: 题型:
【题目】
在平面直角坐标系中,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为:,经过点,倾斜角为的直线l与曲线C交于A,B两点
(I)求曲线C的直角坐标方程和直线l的参数方程;
(Ⅱ)求的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线为公海与领海的分界线,一艘巡逻艇在原点处发现了北偏东 海面上处有一艘走私船,走私船正向停泊在公海上接应的走私海轮航行,以便上海轮后逃窜.已知巡逻艇的航速是走私船航速的2倍,且两者都是沿直线航行,但走私船可能向任一方向逃窜.
(1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;
(2)若与公海的最近距离20海里,要保证在领海内捕获走私船,则,之间的最远距离是多少海里?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知菱形中,,与相交于点,将沿折起,使顶点至点,在折起的过程中,下列结论正确的是( )
A.B.存在一个位置,使为等边三角形
C.与不可能垂直D.直线与平面所成的角的最大值为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x),g(x)满足关系g(x)=f(x)f(x+α),其中α是常数.
(1)设f(x)=cosx+sinx,,求g(x)的解析式;
(2)设计一个函数f(x)及一个α的值,使得;
(3)当f(x)=|sinx|+cosx,时,存在x1,x2∈R,对任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1-x2|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出定理:在圆锥曲线中,是抛物线的一条弦,是的中点,过点且平行于轴的直线与抛物线的交点为.若两点纵坐标之差的绝对值,则的面积,试运用上述定理求解以下各题:
(1)若,所在直线的方程为,是的中点,过且平行于轴的直线与抛物线的交点为,求;
(2)已知是抛物线的一条弦,是的中点,过点且平行于轴的直线与抛物线的交点为,分别为和的中点,过且平行于轴的直线与抛物线分别交于点,若两点纵坐标之差的绝对值,求和;
(3)请你在上述问题的启发下,设计一种方法求抛物线:与弦围成成的“弓形”的面积,并求出相应面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com