精英家教网 > 高中数学 > 题目详情

(08年长郡中学二模文)(13分)已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.

(Ⅰ)求函数f(x)的解析式;

  (Ⅱ)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;

     (Ⅲ)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.

解析:(I)f′(x)=3ax2+2bx-3,依题意,f′(1)=f′(-1)=0,

        即 解得a=1,b=0.∴f(x)=x3-3x.                     (4分)

(II)∵f(x)=x3-3x,∴f′(x)=3x2-3=3(x+1)(x-1),

当-1时,f′(x)<0,故f(x)在区间[-1,1]上为减函数,          (6分)

fmax(x)=f(-1)=2,fmin(x)=f(1)=-2

∵对于区间[-1,1]上任意两个自变量的值x1,x2

都有|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|=2-(-2)=4                        (8分)

  (III)f′(x)=3x2-3=3(x+1)(x-1),∵曲线方程为y=x3-3x,

∴点A(1,m)不在曲线上.

设切点为M(x0,y0),则点M的坐标满足

,故切线的斜率为

整理得.∵过点A(1,m)可作曲线的三条切线,

∴关于x0方程=0有三个实根                    (10分)

设g(0)= ,则g′(x0)=6

由g′(x0)=0,得x0=0或x0­=1.

∴g(x0)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减.

∴函数g(x0)= 的极值点为x0=0,x0=1            (11分)

∴关于x0方程=0有三个实根的充要条件是

,解得-3-2.

故所求的实数a的取值范围是-3-2.                           (13分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年长郡中学二模理) (12分)  某工厂为了保障安全生产,每月初组织工人参加一次技能测试. 甲、乙两名工人通过每次测试的概率分别是. 假设两人参加测试是否通过相互之间没有影响.

   (I)求甲工人连续3个月参加技能测试至少1次未通过的概率;

   (II)求甲、乙两人各连续3个月参加技能测试,甲工人恰好通过2次且乙工人恰好通过1次的概率;

   (III)工厂规定:工人连续2次没通过测试,则被撤销上岗资格. 求乙工人恰好参加4次测试后被撤销上岗资格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年长郡中学二模理)(13分)如图,公园有一块边长为2a的等边三角形的边角地,今要修成草地,并使DE把草坪分成面积相等的两部分,如果

   (1)将用x表示y的函数关系;并指出函数的定义域;

   (2)如果DE是灌溉水管,为节约成本,希望它最短,问DE的位置应如何确定?如果DE是观光路线,则希望它最长,问DE的位置应如何确定?说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年长郡中学二模理)(13分)已知函数,其中。设两曲线有公共点,且在公共点处的切线相同。

(1)若,求的值;

(2)用表示,并求的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年长郡中学二模文)(13分)已知数列是其前项的和,且≥2),

(1)求数列的通项公式;        

(2)设,是否存在最小的正整数,使得对于任意的正整数n,有恒成立?若存在,求出的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年长郡中学二模文)(13分)设F是抛物线的焦点,过点M(-1,0)且以为方向向量的直线顺次交抛物线于A,B两点。

(1)当时,若的夹角为,求抛物线的方程;

(2)若点A,B满足,证明为定值,并求此时△AFB的面积。

查看答案和解析>>

同步练习册答案