(08年长郡中学二模文)(13分)已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(Ⅲ)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
解析:(I)f′(x)=3ax2+2bx-3,依题意,f′(1)=f′(-1)=0,
即 解得a=1,b=0.∴f(x)=x3-3x. (4分)
(II)∵f(x)=x3-3x,∴f′(x)=3x2-3=3(x+1)(x-1),
当-1
fmax(x)=f(-1)=2,fmin(x)=f(1)=-2
∵对于区间[-1,1]上任意两个自变量的值x1,x2,
都有|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|=2-(-2)=4 (8分)
(III)f′(x)=3x2-3=3(x+1)(x-1),∵曲线方程为y=x3-3x,
∴点A(1,m)不在曲线上.
设切点为M(x0,y0),则点M的坐标满足
因,故切线的斜率为,
整理得.∵过点A(1,m)可作曲线的三条切线,
∴关于x0方程=0有三个实根 (10分)
设g(x0)= ,则g′(x0)=6,
由g′(x0)=0,得x0=0或x0=1.
∴g(x0)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减.
∴函数g(x0)= 的极值点为x0=0,x0=1 (11分)
∴关于x0方程=0有三个实根的充要条件是
,解得-3
故所求的实数a的取值范围是-3
科目:高中数学 来源: 题型:
(08年长郡中学二模理) (12分) 某工厂为了保障安全生产,每月初组织工人参加一次技能测试. 甲、乙两名工人通过每次测试的概率分别是. 假设两人参加测试是否通过相互之间没有影响.
(I)求甲工人连续3个月参加技能测试至少1次未通过的概率;
(II)求甲、乙两人各连续3个月参加技能测试,甲工人恰好通过2次且乙工人恰好通过1次的概率;
(III)工厂规定:工人连续2次没通过测试,则被撤销上岗资格. 求乙工人恰好参加4次测试后被撤销上岗资格的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年长郡中学二模理)(13分)如图,公园有一块边长为2a的等边三角形的边角地,今要修成草地,并使DE把草坪分成面积相等的两部分,如果。
(1)将用x表示y的函数关系;并指出函数的定义域;
(2)如果DE是灌溉水管,为节约成本,希望它最短,问DE的位置应如何确定?如果DE是观光路线,则希望它最长,问DE的位置应如何确定?说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年长郡中学二模文)(13分)已知数列,是其前项的和,且(≥2),
(1)求数列的通项公式;
(2)设,,是否存在最小的正整数,使得对于任意的正整数n,有恒成立?若存在,求出的值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年长郡中学二模文)(13分)设F是抛物线的焦点,过点M(-1,0)且以为方向向量的直线顺次交抛物线于A,B两点。
(1)当时,若与的夹角为,求抛物线的方程;
(2)若点A,B满足,证明为定值,并求此时△AFB的面积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com