精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= sinωx+cosωx(ω>0)的图象与x轴交点的横坐标构成一个公差为 的等差数列,把函数f(x)的图象沿x轴向左平移 个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是(
A.在[ ]上是增函数
B.其图象关于直线x=﹣ 对称
C.函数g(x)是奇函数
D.当x∈[ π]时,函数g(x)的值域是[﹣2,1]

【答案】D
【解析】解:∵f(x)= sinωx+cosωx= =
由题意知 ,则T=π,∴ω=

把函数f(x)的图象沿x轴向左平移 个单位,得g(x)=f(x+ )=2 =2cos2x.
其图象如图:

由图可知,函数在[ ]上是减函数,A错误;
其图象的对称中心为( ),B错误;
函数为偶函数,C错误;

∴当x∈[ π]时,函数g(x)的值域是[﹣2,1],D正确.
故选:D.
【考点精析】利用函数y=Asin(ωx+φ)的图象变换对题目进行判断即可得到答案,需要熟知图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn , 且S4=4S2 , a2+a4=10.
(1)求数列{an}通项公式;
(2)若数列{bn}满足 + +…+ =1﹣ ,n∈N* , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形, , .

(Ⅰ)若的中点,求证: 平面

(Ⅱ)若 ,求三棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a,b,c分别为内角A,B,C所对边的边长,且满足a-2bsin A=0.

(1)求角B的大小;

(2)若a+c=5,且a>c,b=,求·的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCD为矩形,PA平面ABCD,PA=AD,M,N,Q分别是PC,AB,CD的中点.

求证:(1)MN平面PAD;

(2)平面QMN平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD是边长为3的正方形,DE平面ABCD,AFDE,DE=3AF,BE与平面ABCD所成角为60°.

(1)求二面角F-BE-D的余弦值;

(2)设点M是线段BD上一个动点,试确定点M的位置,使得AM平面BEF,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当a=1,求函数fx)在[1,e]上的最小值和最大值;

2)当a≤0,讨论函数fx)的单调性;

3)是否存在实数a,对任意的x1,x20,+∞,x1≠x2,都有恒成立.若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

命题b2-4ac<0,则方程ax2+bx+c=0(a≠0)没有实根的否命题;

命题△ ABC,AB=BC=CA,△ ABC为等边三角形的逆命题;

命题a>b>0,a>b>0”的逆否命题;

命题m>1,mx2-2(m+1)x+(m-3)<0的解集为R”的逆命题.

其中真命题的序号为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买2台机器该种机器使用三年后即被淘汰.机器有一易损零件在购进机器时可以额外购买这种零件作为备件每个200元.在机器使用期间如果备件不足再购买则每个500元.现需决策在购买机器时应同时购买几个易损零件为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数得下面柱状图:

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率X表示2台机器三年内共需更换的易损零件数n表示购买2台机器的同时购买的易损零件数.

(1)X的分布列;

(2)若要求P(Xn)0.5确定n的最小值;

(3)以购买易损零件所需费用的期望值为决策依据n19n20之中选其一应选用哪个?

查看答案和解析>>

同步练习册答案