精英家教网 > 高中数学 > 题目详情
19.同样大小的正方体木块堆放在房间的一个角落里,如图所示,问这些木块中看不见的木块有多少个?

分析 根据已知归纳可得堆放n层共有:1+(1+2)+(1+2+3)+…+(1+2+3+…+n)=$\frac{n(n+1)(n+2)}{6}$个正方体木块,进而得到答案.

解答 解:由已知中正方体木块堆放方式可得:
堆放1层共有:1个正方体木块;
堆放2层共有:1+(1+2)个正方体木块;
堆放3层共有:1+(1+2)+(1+2+3)个正方体木块;

归纳可得:堆放n层共有:1+(1+2)+(1+2+3)+…+(1+2+3+…+n)=$\frac{n(n+1)(n+2)}{6}$个正方体木块;
由图可得:木块共堆放8层,故有$\frac{8×9×10}{6}$=120块.

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知命题p:“方程$\frac{{x}^{2}}{2m-1}$+$\frac{{y}^{2}}{2-m}$=m+2表示的曲线是椭圆”,命题q:“方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{m-3}$=2m+1表示的曲线是双曲线”.且p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设二次函数f(x)=ax2+bx+1(a,b∈R,a>0),方程f(x)=x的两个实数根为x1,x2,若0<x1<2,|x2-x1|=2,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=x2-2x,则f(8)=48,f(x+1)=x2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线y=$\frac{1}{4}$x2的焦点关于直线x-y-1=0的对称点的坐标是 (  )
A.(2,-1)B.(1,-1)C.($\frac{1}{4}$,-$\frac{1}{4}$)D.($\frac{1}{16}$,-$\frac{1}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.命题:“?x∈R,x2+2ax+2-a=0”;命题q:已知函数f(x)=log2(a-2x)+x-2,f(x)存在零点,命题p∧q为真命题,求参数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数y=$\frac{{x}^{4}+4{x}^{3}+17{x}^{2}+26x+106}{{x}^{2}+2x+7}$的最大值与最小值,其中|x|≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{\root{3}{{x}^{2}+2x+1}+\root{3}{{x}^{2}-1}+\root{3}{{x}^{2}-2x+1}}$,求f(1)+f(3)+f(5)+…+f(2k-1)+…+f(999)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow a=(3,1),\overrightarrow b=(1,3),\overrightarrow c=(k,2)$,若$(\overrightarrow a-\overrightarrow c)∥\overrightarrow b$,则k=$\frac{10}{3}$.

查看答案和解析>>

同步练习册答案