精英家教网 > 高中数学 > 题目详情
已知直线l:x-y-m=0经过抛物线C:y2=2px(p>0)的焦点,l与C交与A,B两点,若|AB|=6.则p的值为
 
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:先根据抛物线的方程求得焦点的坐标,代入直线方程求得m和p的关系式,把直线与抛物线方程联立消去y后,结合韦达定理和焦点弦公式,求出满足条件的p值.
解答: 解:设A(x1,y1),B(x2,y2),
由题意得,抛物线C:y2=2px(p>0)的焦点F(
p
2
,0),
代入直线l:x-y-m=0得,m=
p
2
,则直线l的方程是x-y-
p
2
=0,
y2=2px
x-y-
p
2
=0
得,x2-3px+
p2
4
=0

则x1+x2=3p,且△=9p2-4×
p2
4
>0

因为|AB|=6,所以x1+x2+p=6,即4p=6,得p=
3
2

故答案为:
3
2
点评:本题考查抛物线的简单性质和焦点弦公式,韦达定理的应用,以及直线与圆锥曲线的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:kx-y-2-k=0(k∈R).
(1)证明:直线过l定点;
(2)若直线不经过第二象限,求k的取值范围;
(3)若直线l交x轴正半轴于A,交y轴负半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若∠α的终边经过点P(-
2
3
5
3
),则tanα•cosα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={y|y=
|x|
x
(x≠0)},B={x|x2-x-2≤0},则(  )
A、A?BB、B?A
C、A=BD、A∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C1
x2
a2
+
y2
b2
=1 (a>b>0)
的左、右焦点分别为F1、F2,右顶点为A,P为椭圆C1上任意一点,且
PF1
PF2
最大值的取值范围是[c2,3c2],其中c=
a2-b2

(1)求椭圆C1的离心率e的取值范围;
(2)设双曲线C2以椭圆C1的焦点为顶点,顶点为焦点,B是双曲线C2在第一象限上任意一点,当e取得最小值时,试问是否存在常数λ(λ>0),使得∠BAF1=λ∠BF1A恒成立?若存在求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=2,直线l:x+2y-4=0,点P(x0,y0)在直线l上.若存在圆C上的点Q,使得∠OPQ=45°(O为坐标原点),则x0的取值范围是(  )
A、[0,1]
B、[0,
8
5
]
C、[-
1
2
,1]
D、[-
1
2
8
5
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,过左焦点倾斜角为45°的直线被椭圆截得的弦长为
4
2
3

(1)求椭圆E的方程;
(2)若动直线l与椭圆E有且只有一个公共点,过点M(1,0)作l的垂线垂足为Q,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A为方程-x2-2x+8=0的解集,集合B为不等式ax-1≤0的解集.
(1)当a=1时,求A∩B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图程序,输出的结果为(  )
A、
89
100
B、
68
100
C、
68
110
D、
89
144

查看答案和解析>>

同步练习册答案