精英家教网 > 高中数学 > 题目详情
12.从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分布直方图.
(1)求这100份数学试卷的样本平均分$\overline x$和样本方差s2
(同一组中的数据用该组区间的中点值作代表)
(2)由直方图可以认为,这批学生的数学总分Z服从正态分布N(μ,σ2),其中μ近似为样本平均数$\overline x$,σ2近似为样本方差s2
①利用该正态分布,求P(81<z<119);
②记X表示2400名学生的数学总分位于区间(81,119)的人数,利用①的结果,求EX(用样本的分布区估计总体的分布).
附:$\sqrt{366}$≈19,$\sqrt{326}$≈18,若Z=~N(μ,2),则P(μ-σ2),则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

分析 (1)一组中的数据用该组区间的中点值作代表,求这100份数学试卷的样本平均分$\overline x$和样本方差s2
(2)①利用该正态分布,Z~N(100,366),即可求P(81<z<119);
②数学总分位于区间(81,119)的概率为0.6826,X~(2400,0.6826),即可求EX.

解答 解:(1)由题意,$\overline{x}$=60×0.02+70×0.08+80×0.14+90×0.15+100×0.24+110×0.15+120×0.1+130×0.08+140×0.04=100,
样本方差s2=(60-100)2×0.02+(70-100)2×0.08+(80-100)2×0.14+(90-100)2×0.15+(100-100)2×0.24+(110-100)2×0.15+(120-100)2×0.1+(130-100)2×0.08+(140-100)2×0.04=366;
(2)Z~N(100,366),P(81<z<119)=P(100-19<z<100+19)=0.6826;
②数学总分位于区间(81,119)的概率为0.6826,X~(2400,0.6826),
EX=2400×0.6826=1638.24.

点评 本题考查频率分布直方图的应用,样本方差的求法,正态分布,考查分析问题解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知直线y=ax与圆C:x2+y2-2ax-2y+2=0交于两点A,B,且△CAB为等边三角形,则圆C的面积为6π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2x+$\frac{a}{x}$(a∈R).
(1)判断函数f(x)的奇偶性;
(2)若函数f(x)在[2,+∞)上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数$f(x)=2sin({ωx+φ})({ω>0,-\frac{π}{2}<ω<\frac{π}{2}})$的部分图象如图所示,将f(x)的图象向左平移$\frac{π}{6}$个单位后的解析式为y=2sin2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)是定义在R上的奇函数,且f(x-1)为偶函数,当x∈[0,1]时,$f(x)={x^{\frac{1}{2}}}$,若函数g(x)=f(x)-x-b恰有一个零点,则实数b的取值集合是(  )
A.$(2k-\frac{1}{4},2k+\frac{1}{4}),k∈Z$B.$(2k+\frac{1}{2},2k+\frac{5}{2}),k∈Z$
C.$(4k-\frac{1}{4},4k+\frac{1}{4}),k∈Z$D.$(4k+\frac{1}{4},4k+\frac{15}{4}),k∈Z$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知约束条件$\left\{\begin{array}{l}x+y-3≥0\\ x-2y+3≥0\\ x≤a\end{array}\right.$,表示的可行域为D,其中a>1,点(x0,y0)∈D,点(m,n)∈D若3x0-y0与$\frac{n+1}{m}$的最小值相等,则实数a等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.圆x2+y2=1与圆(x-2)2+(y-2)2=5的位置关系为(  )
A.内切B.相交C.外切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)的图象如图所示,则函数g(x)=log${\;}_{\frac{1}{3}}$f(x)的单调递增区间为(  )
A.(-∞,0)B.(4,+∞)C.(-∞,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图所示,在正方体ABCD-A1B1C1D1中,O1、O为上、下底面的中心,在直线D1D、A1D、A1D1、C1D1、O1D与平面AB1C平行的直线有2条.

查看答案和解析>>

同步练习册答案