精英家教网 > 高中数学 > 题目详情
对于定义域为的函数和常数,若对任意正实数使得恒成立,则称函数为“敛函数”.现给出如下函数:
;             ②
;               ④.
其中为“敛1函数”的有
A.①②B.③④C.②③④D.①②③
C

试题分析:根据题意,对于定义域为的函数和常数,若对任意正实数使得恒成立,则称函数为“敛函数”.那么对于
;由于函数递增,那么不会存在一个正数,满足不等式。
;当x>0,c=2,那么存在x,满足题意,成立。
;对于1<x<2,令c=1,,时符号题意。
.=1-,x>1,c=3,则可知满足题意。故选C.函数
点评:该试题有创新性,理解概念和运用概念,是解决试题的关键。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
专家通过研究学生的学习行为,发现学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设表示学生注意力随时间(分钟)的变化规律(越大,表明学生注意力越大),经过试验分析得知:
(Ⅰ)讲课开始后多少分钟,学生的注意力最集中?能坚持多少分钟?
(Ⅱ)讲课开始后5分钟时与讲课开始后25分钟时比较,何时学生的注意力更集中?
(Ⅲ)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲完这道题目?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数满足.
(Ⅰ)求的解析式及其定义域;
(Ⅱ)写出的单调区间并证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于的方程,给出下列四个命题:
①存在实数,使得方程恰有2个不同实根; ②存在实数,使得方程恰有4个不同实根;
③存在实数,使得方程恰有5个不同实根; ④存在实数,使得方程恰有8个不同实根;
其中假命题的个数是(  )
A.0B.1 C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,给出下列四个说法:
①若,则,②点的一个对称中心,
在区间上是增函数,④的图象关于直线对称.
其中正确说法的序号是            .(只填写序号) 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则
_            _.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数在上是增函数的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如果能将一张厚度为0.05mm的报纸对拆,再对拆....对拆50次后,报纸的厚度是多少?你相信这时报纸的厚度可以在地球和月球之间建一座桥吗?(已知地球与月球的距离约为米)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

遂宁二中将于近期召开学生代表大会,规定各班每人推选一名代表,当各班人数除以的余数大于时再增选一名代表。那么,各班可推选代表人数与该班人数之间的函数关系用取整函数表示不大于的最大整数)可以表示为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案