精英家教网 > 高中数学 > 题目详情

如图,直三棱柱ABCA1B1C1 中,ACBC =1,∠ACB =90°,AA1DA1B1 中点.

(1)       求证C1D ⊥平面A1B ;(2)当点FBB1 上什么位置时,会使得AB1 ⊥平面C1DF ?并证明你的结论。

证明:(1)如图,∵  ABCA1B1C1 是直三棱柱,

∴  A1C1B1C1 =1,且∠A1C1B1 =90°。

DA1B1 的中点,∴  C1DA1B1

∵  AA1 ⊥平面A1B1C1C1D 平面A1B1C1

∴  AA1C1D ,∴  C1D ⊥平面AA1B1B

(2)解:作DEAB1AB1E ,延长DEBB1F ,连结C1F ,则AB1 ⊥平面C1DF ,点F 即为所求。

∵  C1D ⊥平面AA1BBAB1 平面AA1B1B

∴  C1DAB1 .又AB1DFDF C1DD

∴  AB1 ⊥平面C1DF

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,侧棱AA1=1,侧面AA1B1B的两条对角线交于点D,B1C1的中点为M,求证:CD⊥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角;
(2)在线段AA1中上是否存在点F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求线段MN的长;
(Ⅱ)求证:MN∥平面ABB1A1
(Ⅲ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中点.
(Ⅰ)证明:A1C1∥平面ACD;
(Ⅱ)求异面直线AC与A1D所成角的大小;
(Ⅲ)证明:直线A1D⊥平面ADC.

查看答案和解析>>

同步练习册答案