精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=3x+m3﹣x为奇函数.
(1)求函数g(x)=f(x)﹣ 的零点;
(2)若对任意t∈R的都有f(t2+a2﹣a)+f(1+2at)≥0恒成立,求实数a的取值范围.

【答案】
(1)解:∵f(x)是奇函数,∴f(0)=0,

解得:m=﹣1,

∴f(x)=3x﹣3﹣x,令g(x)=0,即3x﹣3﹣x =0,

令t=3x,则t﹣ =0,

即3t2﹣8t﹣3=0,解得:t=3或t=﹣

∵t=3x≥0,∴t=3即x=1,

∴函数g(x)的零点是1;


(2)解:∵对任意t∈R的都有f(t2+a2﹣a)+f(1+2at)≥0恒成立,

∴f(t2+a2﹣a)≥﹣f(1+2at)对任意t∈R恒成立,

∵f(x)在R是奇函数也是增函数,

∴f(t2+a2﹣a)≥﹣f(﹣1﹣2at)对任意t∈R恒成立,

即t2+a2﹣a≥﹣1﹣2at对任意t∈R恒成立,

即t2+2at+a2﹣a+1≥0对任意t∈R恒成立,

∴△=(2a)2﹣4(a2﹣a+1)≤0,

∴a≤1,实数a的范围是(﹣∞,1].


【解析】(1)根据函数的奇偶性得到f(0)=0,求出m的值,从而求出f(x)的解析式,令g(x)=0,求出函数的零点即可;(2)根据函数的奇偶性和单调性,问题转化为t2+2at+a2﹣a+1≥0对任意t∈R恒成立,根据二次函数的性质求出a的范围即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知射线OA:x﹣y=0(x≥0),OB:2x+y=0(x≥0).过点P(1,0)作直线分别交射线OA,OB于点A,B.
(1)当AB的中点在直线x﹣2y=0上时,求直线AB的方程;
(2)当△AOB的面积取最小值时,求直线AB的方程.
(3)当PAPB取最小值时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,a≠1且loga3>loga2,若函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为1.
(1)求a的值;
(2)解不等式
(3)求函数g(x)=|logax﹣1|的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校高一年级1000名学生中随机抽取100名测量身高,测量后发现被抽取的学生身高全部介于155厘米到195厘米之间,将测量结果分为八组:第一组[155,160),第二组[160,165),…,第八组[190,195),得到频率分布直方图如图所示. (Ⅰ)计算第三组的样本数;并估计该校高一年级1000名学生中身高在170厘米以下的人数;
(Ⅱ)估计被随机抽取的这100名学生身高的中位数、平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行程序框图,如果输入的N的值为7,那么输出的p的值是(
A.120
B.720
C.1440
D.5040

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴交于点D,且有|FA|=|FD|,当点A的横坐标为3时,△ADF为正三角形
(1)求C的方程
(2)延长AF交抛物线于点E,过点E作抛物线的切线l1 , 求证:l1∥l.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知△ABC的顶点A(5,1),B(1,5).
(1)若A为直角△ABC的直角顶点,且顶点C在y轴上,求BC边所在直线方程;
(2)若等腰△ABC的底边为BC,且C为直线l:y=2x+3上一点,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+ 的取值范围为(
A.(﹣1,+∞)
B.(﹣1,1)
C.(﹣∞,1)
D.[﹣1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体ABCD中,AB=CD=2 ,AD=BD=3,AC=BC=4,点E,F,G,H分别在棱AD,BD,BC,AC上,若直线AB,CD都平行于平面EFGH,则四边形EFGH面积的最大值是

查看答案和解析>>

同步练习册答案