精英家教网 > 高中数学 > 题目详情

【题目】给定下列函数:①f(x)= ②f(x)=﹣|x|③f(x)=﹣2x﹣1 ④f(x)=(x﹣1)2 , 满足“对任意x1 , x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的条件是( )
A.①②③
B.②③④
C.①②④
D.①③④

【答案】A
【解析】解:因为对任意x1 , x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2),故满足条件的函数是一个减函数.
对于①,函数是反比例函数,其在(0,+∞)是一个减函数,满足题意;
对于②,f(x)=﹣|x|,其在(0,+∞)是一个减函数,满足题意;
对于③,函数是一次函数,其在(0,+∞)是一个减函数,满足题意;
对于④,函数f(x)=(x﹣1)2在(0,1)是减函数,在(1,+∞)上是增函数,故不满足题意;
故选A.
【考点精析】解答此题的关键在于理解函数的单调性的相关知识,掌握注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种,以及对函数奇偶性的性质的理解,了解在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为迎接2017年“双”,“双”购物狂欢节的来临,某青花瓷生产厂家计划每天生产汤碗、花瓶、茶杯这三种瓷器共个,生产一个汤碗需分钟,生产一个花瓶需分钟,生产一个茶杯需分钟,已知总生产时间不超过小时.若生产一个汤碗可获利润元,生产一个花瓶可获利润元,生产一个茶杯可获利润元.

(1)使用每天生产的汤碗个数与花瓶个数表示每天的利润(元);

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过关者奖励件小奖品(奖品都一样).下图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.

(Ⅰ)求小明在这十次游戏中所得奖品数的均值;

(Ⅱ)规定过三关者才能玩另一个高级别的游戏,估计小明一次游戏后能玩另一个游戏的概率;

(Ⅲ)已知小明在某四次游戏中所过关数为{2,2,3,4},小聪在某四次游戏中所过关数为{3,3,4,5},现从中各选一次游戏,求小明和小聪所得奖品总数超过10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的单调区间;

2)若时,不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, // , 点 边的中点, 将△沿折起,使平面⊥平面,连接, , , 得到如图所示的几何体.

(Ⅰ)求证: ⊥平面

(Ⅱ)若 ,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面结论正确的是( )

①一个数列的前三项是1,2,3,那么这个数列的通项公式.

②由平面三角形的性质推测空间四面体的性质,这是一种合理推理.

③在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.

④“所有3的倍数都是9的倍数,某数一定是9的倍数,则一定是9的倍数”,这是三段论推理,但其结论是错误的.

A. ①② B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积是 ,表面积是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是菱形的四棱锥中, 为线段上一点,且

(Ⅰ)若的中点,证明: 平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆为参数)上的每一点的横坐标保持不变,纵坐标变为原来的倍,得到曲线

(1)求出的普通方程;

(2)设直线 的交点为 ,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.

查看答案和解析>>

同步练习册答案