精英家教网 > 高中数学 > 题目详情
(2012•闵行区一模)记函数f(x)在区间D上的最大值与最小值分别为max{f(x)|x∈D}与min{f(x)|x∈D}.设函数f(x)=
-x+2b,x∈[1,b]
b,      x∈(b,3]
(1<b<3),g(x)=f(x)+ax,x∈[1,3],令h(a)=max{g(x)|x∈[1,3]}-min{g(x)|x∈[1,3]},记d(b)=min{h(a)|a∈R}.
(1)若函数g(x)在[1,3]上单调递减,求a的取值范围;
(2)当a=
b-1
2
时,求h(a)关于a的表达式;
(3)试写出h(a)的表达式,并求max{d(b)|b∈(1,3)}.
分析:(1)根据函数f(x)=
-x+2b,x∈[1,b]
b,      x∈(b,3]
(1<b<3),g(x)=f(x)+ax,x∈[1,3],可得函数g(x)的解析式,利用函数在[1,3]上单调递减,即可求a的取值范围;
(2)当b=2a+1时,0<a<1,g(x)=
(a-1)x+4a+2,x∈[1,2a+1]
ax+2a+1,      x∈(2a+1,3]
,确定函数的单调性,求得函数的最值,即可求h(a)关于a的表达式;
(3)g(x)=
(a-1)x+2b,x∈[1,b]
ax+b,      x∈(b,3]
,分类讨论,确定函数的最小值,利用函数的单调性,确定d(b)=min{h(a)|a∈R},从而可求max{d(b)|b∈(1,3)}.
解答:解:(1)∵函数f(x)=
-x+2b,x∈[1,b]
b,      x∈(b,3]
(1<b<3),g(x)=f(x)+ax,x∈[1,3],
g(x)=
(a-1)x+2b,x∈[1,b]
ax+b,      x∈(b,3]
(2分)
由题意
a-1<0
a<0
,∴a<0    (4分)
(2)当b=2a+1时,0<a<1,g(x)=
(a-1)x+4a+2,x∈[1,2a+1]
ax+2a+1,      x∈(2a+1,3]

显然g(x)在[1,2a+1]上单调递减,在[2a+1,3]上单调递增,又此时g(1)=g(3)=5a+1
故max{g(x)|x∈[1,3]}=g(1)=g(3)=5a+1,min{g(x)|x∈[1,3]}=g(2a+1)=2a2+3a+1,(4分)
从而:h(a)=-2a2+2a,a∈(0,1).                          (6分)
(3)g(x)=
(a-1)x+2b,x∈[1,b]
ax+b,      x∈(b,3]

①当a≤0时,max{g(x)|x∈[1,3]}=g(1)=a+2b-1,min{g(x)|x∈[1,3]}=g(3)=3a+b
此时,h(a)=-2a+b-1
②当a≥1时,max{g(x)|x∈[1,3]}=g(3)=3a+b,min{g(x)|x∈[1,3]}=g(1)=a+2b-1
此时,h(a)=2a-b+1                (2分)
③当0<a≤
b-1
2
时,max{g(x)|x∈[1,3]}=g(1)=a+2b-1,min{g(x)|x∈[1,3]}=g(b)=ab+b,
此时,h(a)=a+b-ab-1
④当
b-1
2
<a<1
时,max{g(x)|x∈[1,3]}=g(3)=3a+b,min{g(x)|x∈[1,3]}=g(b)=ab+b,
此时,h(a)=3a-ab
故h(a)=
-2a+b-1,a≤0
(1-b)a+b-1,0<a≤
b-1
2
(3-b)a,
b-1
2
<a<1
2a-b+1,a≥1
,(4分)
因h(a)在(-∞,
b-1
2
]上单调递减,在[
b-1
2
,+∞)单调递增,
故d(b)=min{h(a)|a∈R}=h(
b-1
2
)=
(3-b)(b-1)
2
,(6分)
故当b=2时,得max{d(b)|b∈(1,3)}=
1
2
.        (8分)
点评:本题考查函数的解析式,考查函数的最值的求解,考查函数的单调性,考查分类讨论的数学思想,确定函数的单调性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•闵行区一模)设等差数列{an}的首项及公差均是正整数,前n项和为Sn,且a1>1,a4>6,S3≤12,则a2012=
4024
4024

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)在一圆周上给定1000个点.(如图)取其中一点标记上数1,从这点开始按顺时针方向数到第二个点标记上数2,从标记上2的点开始按顺时针方向数到第三个点标记上数3,继续这个过程直到1,2,3,…,2012都被标记到点上,圆周上这些点中有些可能会标记上不止一个数,在标记上2012的那一点上的所有标记的数中最小的是
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)设x1、x2是关于x的方程x2+mx+
1+m2
=0
的两个不相等的实数根,那么过两点A(x1
x
2
1
)
B(x2
x
2
2
)
的直线与圆x2+y2=1的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)设双曲线C:
x2
a2
-
y2
b2
=1(a,b>0)
的虚轴长为2
3
,渐近线方程是y=±
3
x
,O为坐标原点,直线y=kx+m(k,m∈R)与双曲线C相交于A、B两点,且
OA
OB

(1)求双曲C的方程;
(2)求点P(k,m)的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)将边长分别为1、2、3、…、n、n+1、…(n∈N*)的正方形叠放在一起,形成如图所示的图形,由小到大,依次记各阴影部分所在的图形为第1个、第2个、…、第n个阴影部分图形.容易知道第1个阴影部分图形的周长为8.设前n个阴影部分图形的周长的平均值为f(n),记数列{an}满足an=
f(n),当n为奇数
f(an-1) ,当n为偶数

(1)求f(n)的表达式;
(2)写出a1,a2,a3的值,并求数列{an}的通项公式;
(3)记bn=an+s(s∈R),若不等式
.
bn+1bn+1
bn+2bn
.
>0
有解,求s的取值范围.

查看答案和解析>>

同步练习册答案