精英家教网 > 高中数学 > 题目详情

【题目】如图,已知圆轴的左右交点分别为,与轴正半轴的交点为.

(1)若直线过点并且与圆相切,求直线的方程;

(2)若点是圆上第一象限内的点,直线分别与轴交于点,点是线段的中点,直线,求直线的斜率.

【答案】(1);(2).

【解析】

1)首先验证当直线斜率不存在时,可知满足题意;当直线斜率不存在时,假设直线方程,利用构造方程可求得切线斜率,从而得到结果;(2)假设直线方程,与圆的方程联立可求得;求出直线斜率后,可得,利用可知,从而构造方程可求得直线的斜率.

(1)当斜率不存在时,直线方程为:,与圆相切,满足题意

当斜率存在时,设切线方程为:,即:

由直线与圆相切得:,即:,解得:

切线方程为:,即:

综上所述,切线方程为:

(2)由题意易知直线的斜率存在

故设直线的方程为:

消去得:

,代入得:

中,令得:

是线段的中点

中,用得:

即:,又,解得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面,异面直线所成角等于.

(1)求直线和平面所成角的正弦值;

(2)在棱上是否存在一点,使得平面与平面所成锐二面角的正切值为?若存在,指出点在棱上的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是减函数,求实数的取值范围;

(2)若函数上存在两个极值点,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过点且与直线平行,直线过点且与直线垂直.

Ⅰ)求直线的方程.

若圆同时相切,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是一个容量为20的样本数据分组后的频率分布表:

分组

频数

4

2

6

8

(1)请估计样本的平均数;

(2)以频率估计概率,若样本的容量为2000,求在分组中的频数;

(3)若从数据在分组与分组的样本中随机抽取2个,求恰有1个样本落在分组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若= + ,则+的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若上恒成立,求实数的取值范围;

(Ⅲ)若数列的前项和 ,求证:数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的图象大致为(  )

A. B.

C. D.

【答案】C

【解析】

由函数的解析式,是函数的一个零点,属于排除A,B,

x∈(0,1)时,cosx>0,,函数f(x) <0,函数的图象在x轴下方排除D.

本题选择C选项.

点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.

型】单选题
束】
12

【题目】,则的最小值是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若执行如图的程序框图,输出S的值为4,则判断框中应填入的条件是( )

A.k<14?
B.k<15?
C.k<16?
D.k<17?

查看答案和解析>>

同步练习册答案