精英家教网 > 高中数学 > 题目详情
如图,在中,为△ABC所在平面外一点,PA⊥面ABC,则四面体P-ABC中共有直角三角形个数为
A.4B.3 C.2D.1
A

试题分析:∵PA⊥面ABC,∴PA⊥AB,PA⊥AC,PB⊥CB,∴△ABC,△PBC, △ABP, △APC都是直角三角形,故选A
点评:熟练运用直线与面的垂直及性质是解决此类问题的关键
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于.

(1)求证:⊥EF;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥A-BCDE中,侧面∆ADE是等边三角形,底面BCDE是等腰梯形,且CD∥BE,DE=2,CD=4, ,M是DE的中点,F是AC的中点,且AC=4,

求证:(1)平面ADE⊥平面BCD;
(2)FB∥平面ADE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,,且,E是PC的中点.

(1)证明:;  
(2)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分12分)

已知三棱锥P­ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,
N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(I)证明:CM⊥SN;(II)求SN与平面CMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在多面体中,,


(1)求证:;
(2)求证:
(3)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知为平行四边形所在平面外一点,的中点,
求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,空间中两个有一条公共边AD的正方形ABCD和ADEF.设M、N分别是BD和AE的中点,那么        

①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE异面
以上4个命题中正确的是  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于直线和平面,使成立的一个充分条件是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案