精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆:经过点,离心率为.

(1)求椭圆的方程;

(2)过点的直线交椭圆于两点,为椭圆的左焦点,若,求直线的方程.

【答案】(1);(2

【解析】

1)由椭圆的离心率可得,从而使椭圆方程只含一个未知数,把点的坐标代入方程后,求得,进而得到椭圆的方程为

2)因为直线过定点,所以只要求出直线的斜率即可,此时需对直线的斜率分等于0和不等于0两种情况进行讨论,当斜率不为0时,设直线的方程为,点,利用得到关于的方程,并求得.

(1)设椭圆的焦距为,则

所以,椭圆的方程为

将点的坐标代入椭圆的方程得

解得,则

因此,椭圆的方程为.

2当直线斜率为0时,与椭圆交于,而.

此时,故不符合题意.

当直线斜率不为0时,设直线的方程为,设点

将直线的方程代入椭圆的方程,并化简得

,解得

由韦达定理可得

,同理可得

所以

,即

解得:,符合题意

因此,直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个不透明的袋子中,放有大小相同的5个小球,其中3个黑球,2个白球.如果不放回的依次取出2个球.回答下列问题:

()第一次取出的是黑球的概率;

()第一次取出的是黑球,且第二次取出的是白球的概率;

()在第一次取出的是黑球的条件下,第二次取出的是白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,.

(1)设相交于点,且平面,求实数的值;

(2)若,且,求二面角 的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是平行四边形,.

(1)求异面直线所成的角;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的定义域;

2)判断的奇偶性;

3)求使x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论函数的单调性;

时,求函数在区间上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(请写出式子在写计算结果)有4个不同的小球,4个不同的盒子,现在要把球全部放入盒内:

1)共有多少种方法?

2)若每个盒子不空,共有多少种不同的方法?

3)恰有一个盒子不放球,共有多少种放法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 在△中, 点边上, .

(Ⅰ)求

(Ⅱ)若△的面积是, 求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),定义域均为

(1)若当时,的最小值与的最小值的和为,求实数的值;

(2)设函数,定义域为

①若,求实数的值;

②设函数,定义域为.若对于任意的,总能找到一个实数,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案