精英家教网 > 高中数学 > 题目详情

已知数列的前n项和(n为正整数)。
(Ⅰ)令,求证数列是等差数列,并求数列的通项公式;
(Ⅱ)令试比较的大小,并予以证明。

(1) 数列是首项和公差均为1的等差数列,  
(2) 当,当

解析试题分析:(I)在中,令n=1,可得,即
时,,
.
 
数列是首项和公差均为1的等差数列.
于是.
(II)由(I)得,所以


由①-②得

于是确定的大小关系等价于比较的大小由           可猜想当证明如下:
证法1:(1)当n=3时,由上验算显示成立。
(2)假设
所以当时猜想也成立
综合(1)(2)可知 ,对一切的正整数,都有
证法2:当

综上所述,当,当
考点:数列的通项公式和求和,数学归纳法
点评:解决该试题的关键是能熟练的结合通项公式与前n项和的关系来得到通项公式,并运用数学归纳法来证明。属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列满足:
(1)求的通项公式
(2)当时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为,且
(1)写出的递推关系式,并求,,的值;
(2)猜想关于的表达式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数在区间上有极值,求实数的取值范围;
(2)若关于的方程有实数解,求实数的取值范围;
(3)当时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知数列的前项和为,满足.
(1)求证:数列为等比数列;
(2)若数列满足为数列的前项和,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在数列中,成等差数列,成等比数列
(1)求
(2)猜想的通项公式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知数列满足
(1)设,证明:数列为等差数列,并求数列的通项公式;
(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
正项单调数列的首项为时,,数列对任意均有
(1)求证:数列是等差数列;
(2)已知,数列满足,记数列的前项和为,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)数列的前项和为,等差数列满足
(I)分别求数列的通项公式;
(II)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案