【题目】已知函数的图象是由函数的图象经如下变换得到:先将图象上所有点的纵坐标伸长到原来的倍(横坐标不变),再将所得到的图象向右平移个单位长度.
(1)求函数的解析式,并求其图象的对称轴方程;
(2)已知关于的方程在内有两个不同的解、,求实数的取值范围.
【答案】(1)f(x)=2sinx,对称轴方程为x=k(k∈Z)(2)(,)
【解析】
(1)由函数y=Asin(ωx+φ)的图象变换规律可得:f(x)=2sinx,从而可求对称轴方程;
(2)由三角函数中的恒等变换应用化简解析式可得f(x)+g(x)sin(x+φ)(其中sinφ,cosφ),从而可求||<1,即可得解.
解:(1)将g(x)=cosx的图象上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到y=2cosx的图象,
再将y=2cosx的图象向右平移个单位长度后得到y=2cos(x)的图象,
故f(x)=2sinx,
从而函数f(x)=2sinx图象的对称轴方程为x=k(k∈Z).
(2)f(x)+g(x)=2sinx+cosx()sin(x+φ)(其中sinφ,cosφ)
依题意,sin(x+φ)在区间[0,2π)内有两个不同的解α,β,当且仅当||<1,故m的取值范围是(,).
科目:高中数学 来源: 题型:
【题目】给出以下命题:
① 双曲线的渐近线方程为;
② 命题“,”是真命题;
③ 已知线性回归方程为,当变量增加个单位,其预报值平均增加个单位;
④ 设随机变量服从正态分布,若,则;
⑤ 已知,,,,依照以上各式的规律,得到一般性的等式为,()
则正确命题的序号为 (写出所有正确命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的选法为( )
A. 45 种B. 42 种C. 28 种D. 16种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学共有1000名学生参加了该地区高三第一次质量检测的数学考试,数学成绩如下表所示:
数学成绩分组 | [0,30) | [30,60) | [60,90) | [90,120) | [120,150] |
人数 | 60 | 90 | 300 | x | 160 |
(Ⅰ)为了了解同学们前段复习的得失,以便制定下阶段的复习计划,学校将采用分层抽样的方法抽取100名同学进行问卷调查,甲同学在本次测试中数学成绩为95分,求他被抽中的概率;
(Ⅱ)作出频率分布直方图,并估计该学校本次考试的数学平均分.(同一组中的数据用该组区间的中点值作代表)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角和以为直径的半圆拼接而成,点为半圈上一点(异于,),点在线段上,且满足.已知,,设.
(1)为了使工艺礼品达到最佳观赏效果,需满足,且达到最大.当为何值时,工艺礼品达到最佳观赏效果;
(2)为了工艺礼品达到最佳稳定性便于收藏,需满足,且达到最大.当为何值时,取得最大值,并求该最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:(a>b>0)的离心率为,且过点(1,).
(1)求椭圆C的方程;
(2)设与圆O:x2+y2=相切的直线l交椭圆C于A,B两点,求△OAB面积的最大值,及取得最大值时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(I)在答题卡上作出这些数据的频率分布直方图:
(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com