精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和为,且

(Ⅰ)求数列的通项公式;

(Ⅱ)设,求数列项和

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析:时, 两式相减可得 可得是以首项为2,公比为2等比数列,进而可得结果;(结合可得利用错位相减法求和可得结果.

试题解析:(Ⅰ)

时,

时,

两式相减,得所以

所以是以首项为2,公比为2等比数列,

所以

(Ⅱ)因为

两式相减,得即

所以

【易错点晴】本题主要考查数列的通项及等比数列、“错位相减法”求数列的和,属于难题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项 的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知fx=|x+1|+|x-1|,不等式fx<4的解集为M.

1M.

2a,bM,证明:2|a+b|<|4+ab|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图)∠ABC=45°,AB= , AD=1,DC⊥BC,则这块菜地的面积为 

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在[0,+∞)上递增,=0,已知g(x)=﹣f(|x|),满足的x的取值范围是(  )
A.(0,+∞)
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下图中,四边形 ABCD是等腰梯形, OQ分别为线段ABCD的中点,OQEF的交点为POP=1,PQ=2,现将梯形ABCD沿EF折起,使得,连结ADBC,得一几何体如图所示.

(Ⅰ)证明:平面ABCD平面ABFE

(Ⅱ)若上图中, ,CD=2,求平面ADE与平面BCF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4x﹣2x+1+3,当x∈[﹣2,1]时,f(x)的最大值为m,最小值为n,
(1)若角α的终边经过点P(m,n),求sinα+cosα的值;
(2)g(x)=mcos(nx+)+n,求g(x)的最大值及自变量x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=的值域是[0,+∞),则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)在(﹣∞,0)上单调递减,且f(2)=0,则不等式xf(x﹣1)>0的解集是(
A.(﹣3,﹣1)
B.(﹣3,1)∪(2,+∞)
C.(﹣3,0)∪(3,+∞)
D.(﹣1,0)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC的对边分别为abc,且(2bc)cos Aacos C

(1)求角A的大小;

(2)若a=3,b=2c,求△ABC的面积.

查看答案和解析>>

同步练习册答案