分析 根据f(x+4)=f(x)推得f(x)是以4为周期的函数,再根据函数的奇偶性原问题等价为:x∈(0,2)时,f(x)必有唯一零点.
解答 解:因为f(x+4)=f(x),所以f(x)是以4为周期的函数,
且f(x)为奇函数,所以f(0)=0,因此f(4)=f(0)=0,
再令x=-2代入f(x+4)=f(x)得,f(-2)=f(2)=-f(2),
所以,f(-2)=f(2)=0,
因此,要使f(x)=0在[-4,4]上有9个零点,
则f(x)在(0,4]上必有4个零点,且已有零点x=2,x=4,
所以,当x∈(0,2)时,f(x)必有唯一零点,
(依据:若在(0,2)有唯一零点,则(-2,0)有唯一零点,则(2,4)有唯一零点)
即令f(x)=ln(x2+a)=0,分离a得,a=1-x2,x∈(0,2),
解得a∈(-3,1),且a>0,所以,a∈(0,1),
故答案为:(0,1).
点评 本题主要考查了函数零点的判定,涉及函数的图象和性质,尤其是奇偶性和周期性,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com