精英家教网 > 高中数学 > 题目详情

【题目】改革开放以来,中国快递行业持续快速发展,快递业务量从上世纪年代的万件提升到2018年的亿件,快递行业的发展也给我们的生活带来了很大便利.已知某市某快递点的收费标准为:首重(重量小于等于)收费元,续重(不足). (:一个包裹重量为则需支付首付元,续重元,一共元快递费用)

1)若你有三件礼物重量分别为,要将三个礼物分成两个包裹寄出(:合为一个包裹,一个包裹),那么如何分配礼物,使得你花费的快递费最少?

2)对该快递点近天的每日揽包裹数(单位:)进行统计,得到的日揽包裹数分别为件,件,件,件,件,那么从这天中随机抽出天,求这天的日揽包裹数均超过件的概率.

【答案】1一个包裹,一个包裹时花费的运费最少,为元;(2.

【解析】

1)分一个包裹,一个包裹,一个包裹,一个包裹,一个包裹,一个包裹三种情况讨论;

2)采用枚举法,枚举出基本事件总数以及事件“天的日揽包裹数均超过件”所包含的基本事件个数,再利用古典概型的概率计算公式计算即可.

:一个包裹,一个包裹时,需花费()

一个包裹,一个包裹时,需花费()

一个包裹,一个包裹时,需花费()

综上,一个包裹,一个包裹时花费的运费最少,为.

天中有天的日揽包裹数超过件,

记这三天为其余两天为

天中随机抽出天的所有基本事件如下:

一共种,

天的日揽包裹数均超过件的基本事件有,一共种,

所以从这天中随机抽出天,

天的日揽件数均超过件的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,四边形ABCD为平行四边形,BDDC,△PCD为正三角形,平面PCD⊥平面ABCDEPC的中点.

1)证明:AP∥平面EBD

2)证明:BEPC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线有共同的焦点,且离心率为,设分别是为椭圆的上下顶点

1)求椭圆的方程;

2)过点轴不垂直的直线与椭圆交于不同的两点,当弦的中点落在四边形内(含边界)时,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点P40)的动直线与抛物线C交于点AB,且(点O为坐标原点).

1)求抛物线C的方程;

2)当直线AB变动时,x轴上是否存在点Q使得点P到直线AQBQ的距离相等,若存在,求出点Q坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)判断并说明函数的零点个数.若函数所有零点均在区间内,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆台的轴截面为等腰梯形圆台的侧面积为.若点分别为圆上的动点,且点在平面的同侧.

1)求证:

2)若,则当三棱锥的体积取最大值时,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆Q经过定点,且与定直线相切(其中a为常数,且.记动圆圆心Q的轨迹为曲线C.

1)求C的方程,并说明C是什么曲线?

2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于MN两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥ABCD中,点EBD上,EAEBECEDBDCD,△ACD为正三角形,点MN分别在AECD上运动(不含端点),且AMCN,则当四面体CEMN的体积取得最大值时,三棱锥ABCD的外接球的表面积为_____.

查看答案和解析>>

同步练习册答案