精英家教网 > 高中数学 > 题目详情
若曲线表示双曲线,则的取值范围是____________.

试题分析:要是曲线表示双曲线,需满足,解得,所以的取值范围是
点评:椭圆与双曲线的标准方程都可以由二元二次方程表示,但要注意区分两者形式的不同;其次要注意焦点位置不同时,参数a、b大小的不同.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)
设点P是圆x2 +y2 =4上任意一点,由点P向x轴作垂线PP0,垂足为Po,且
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)设直线:y=kx+m(m≠0)与(Ⅰ)中的轨迹C交于不同的两点A,B.
(1)若直线OA,AB,OB的斜率成等比数列,求实数m的取值范围;
(2)若以AB为直径的圆过曲线C与x轴正半轴的交点Q,求证:直线过定点(Q点除外),并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设双曲线x2-y2=1的两条渐近线与直线x=围成的三角形区域(包含边界)为E,P(x,y)为该区域的一个动点,则目标函数z=x-2y的最小值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

点P到点及到直线的距离都相等,如果这样的点恰好只有一个,那么a的值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F为抛物线y2=4x的焦点,A、B、C为该抛物线上三点,若=0,则||+||+||=___________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一动圆圆心在抛物线上,且动圆恒与直线相切,则动圆必过定点
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设分别是圆和椭圆的弦,且弦的端点在轴的异侧,端点的横坐标分别相等,纵坐标分别同号.

(Ⅰ)若弦所在直线斜率为,且弦的中点的横坐标为,求直线的方程;
(Ⅱ)若弦过定点,试探究弦是否也必过某个定点. 若有,请证明;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的左、右两焦点分别为,点在椭圆上,
,则椭圆的离心率等于  (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知抛物线的焦点为,准线为,过上一点P作抛物线的两切线,切点分别为A、B,
(1)求证:
(2)求证:A、F、B三点共线;
(3)求的值.

查看答案和解析>>

同步练习册答案