精英家教网 > 高中数学 > 题目详情

【题目】关于的方程,给出下列四个判断:

①存在实数,使得方程恰有4个不同的实根;

②存在实数,使得方程恰有5个不同的实根;

③存在实数,使得方程恰有6个不同的实根;

④存在实数,使得方程恰有8个不同的实根;

其中正确的为________(写出所有判断正确的序号).

【答案】①②③④

【解析】 ,则原方程等价于,判别式

作出函数的图象如图,

由图象可知:当时,方程个不同的根,

时,方程个不同的根,

时,方程个不同的根,

时,方程个不同的根,

时,方程个不同的根,

时,关于的方程有两个实数根,所以是正确的;

时,关于的方程有四个实数根,所以是正确的;

时,关于的方程有六个实数根,所以是正确的;

时,关于的方程有八个实数根,所以是正确的,所以正确的序号为①②③④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某班为了提高学生学习英语的兴趣,在班内举行英语写、说、唱综合能力比赛,比赛分为预赛和决赛2个阶段,预赛为笔试,决赛为说英语、唱英语歌曲,将所有参加笔试的同学(成绩得分为整数,满分100分)进行统计,得到频率分布直方图,其中后三个矩形高度之比依次为4:2:1,落在的人数为12人.

(Ⅰ)求此班级人数;

(Ⅱ)按规定预赛成绩不低于90分的选手参加决赛,已知甲乙两位选手已经取得决赛资格,参加决赛的选手按抽签方式决定出场顺序.

(i)甲不排在第一位乙不排在最后一位的概率;

(ii)记甲乙二人排在前三位的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,讨论的单调区间;

(2)设,当有两个极值点为,且时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的实轴端点分别为,记双曲线的其中一个焦点为,一个虚轴端点为,若在线段上(不含端点)有且仅有两个不同的点,使得,则双曲线的离心率的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,且当时,

(1)求函数上的解析式并画出函数的图象(不要求列表描点,只要求画出草图)

(2)(ⅰ)写出函数单调递增区间;

(ⅱ)若方程上有两个不同的实数根,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P是双曲线 左支上一点, 是双曲线的左右两个焦点,且,线段的垂直平分线恰好是该双曲线的一条渐近线,则离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆轴的正半轴相交于点,点为椭圆的焦点,且是边长为2的等边三角形,若直线与椭圆交于不同的两点

(1)直线的斜率之积是否为定值?若是,请求出该定值;若不是,请说明理由;

(2)求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数是实数,是虚数单位.

(1)求复数

(2)若复数所表示的点在第一象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数的两个零点,

1求实数的值;

2

①若不等式上恒成立,求实数的取值范围;

②若有三个不同的实数解,求实数的取值范围.

查看答案和解析>>

同步练习册答案