A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不必要也不充分条件 |
分析 根据充分条件和必要条件的定义进行判断即可.
解答 解:若$\frac{{x}^{2}}{m-2}$+$\frac{{y}^{2}}{6-m}$=1表示椭圆,
则$\left\{\begin{array}{l}{m-2>0}\\{6-m>0}\\{m-2≠6-m}\end{array}\right.$,即$\left\{\begin{array}{l}{m>2}\\{m<6}\\{m≠4}\end{array}\right.$,即2<m<6且m≠4,
则“2<m<6”是“方程$\frac{{x}^{2}}{m-2}$+$\frac{{y}^{2}}{6-m}$=1表示椭圆”的必要不充分条件,
故选:B
点评 本题主要考查充分条件和必要条件的判断,根据椭圆方程的定义求出m的等价条件是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,0) | B. | [1,+∞) | C. | (-1,1) | D. | [0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{13}{15}$ | B. | $\frac{2}{81}$ | C. | $\frac{13}{243}$ | D. | $\frac{80}{243}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com