精英家教网 > 高中数学 > 题目详情

【题目】如图,已知三棱柱的侧棱垂直于底面, ,点分别是的中点.

(1)证明:平面

(2)设,当为何值时,平面,试证明你的结论.

【答案】)证明见解析(时,

【解析】

试题(1)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质;(2)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.

试题解析:

)取得中点,连接,因为分别为的中点,

所以又因为,,

所以,, 5

所以,因为,

所以6

)连接,,则

由题意知

因为三棱柱侧棱垂直于底面,

所以,

因为,的中点,所以,

, 9

要使

只需即可,

所以,

时,. 12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足,则①数列单调递增;②;③对于给定的实数,若对任意的成立,必有.上述三个结论中正确个数是(

A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】()(2017·衡水二模)某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号0,1,2,3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的编号之和等于7则中一等奖,等于65则中二等奖,等于4则中三等奖,其余结果为不中奖.

(1)求中二等奖的概率.

(2)求不中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年某市有2万多文科考生参加高考,除去成绩为分(含分)以上的3人与成绩为分(不含分)以下的3836人,还有约1.9万文科考生的成绩集中在内,其成绩的频率分布如下表所示:

分数段

频率

0.108

0.133

0.161

0.183

分数段

频率

0.193

0.154

0.061

0.007

(Ⅰ)试估计该次高考成绩在内文科考生的平均分(精确到);

(Ⅱ)一考生填报志愿后,得知另外有4名同分数考生也填报了该志愿.若该志愿计划录取3人,并在同分数考生中随机录取,求该考生不被该志愿录取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润30元,未售出的产品,每盒亏损10元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以(单位:盒, )表示这个开学季内的市场需求量, (单位:元)表示这个开学季内经销该产品的利润.

(1)根据直方图估计这个开学季内市场需求量的平均数;

(2)将表示为的函数;

(3)根据直方图估计利润不少于4000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]

(Ⅰ)求图中的值,并估计该班期中考试数学成绩的众数;

(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下四种变换方式:

向左平移个单位长度,再把所得各点的横坐标缩短到原来的纵坐标不变

向左平移个单位长度,再把所得各点的横坐标缩短到原来的纵坐标不变

把各点的横坐标缩短到原来的纵坐标不变,再向左平移个单位长度;

把各点的横坐标缩短到原来的纵坐标不变,再向左平移个单位长度;

其中能将函数的图象变为函数的图象的是  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只红铃虫的产卵数y和温度x有关,现收集了7组观测数据如下表:

温度x/

21

23

25

27

29

32

35

产卵个数y/

7

11

21

24

66

115

325

(I)根据散点图判断,哪一个适宜作为产卵数关于温度的回归方程类型(给出判断即可,不必说明理由);

(II)根据(I)的判断结果及表中数据,建立关于的回归方程;

Ⅲ)红铃虫是棉区危害较重的害虫,可从农业、物理和化学三个方面进行防治,其中农业方面防治有3种方法,物理方面防治有1种方法,化学方面防治3种方法,现从7种方法中选3种方法进行综合防治(即3种方法不能全部来自同一方面,至少来自两个方面),X表示在综合防治中农业方面的防治方法的种数,求X的分布列及数学期望E(X).

附:可能用到的公式及数据表中(表中 = = =

27.430

3.612

81.290

147.700

2763.764

705.592

40.180

对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

同步练习册答案