精英家教网 > 高中数学 > 题目详情
已知函数的图象过点(2,0).
⑴求m的值;
⑵证明的奇偶性;
⑶判断上的单调性,并给予证明;
(1);(2)是奇函数;(3)上为单调增函数.

试题分析:(1)由已知可将点代入函数,得,从而求出;(2)根据函数奇偶性的定义可证明(定义法证明函数的奇偶性的步骤:①先判断定义域是否关于原点对称;②再判断的关系,即若则为奇函数,若则为偶函数).由(1)得函数,其定义为关于原点对称,又,所以函数为奇函数;(3)根据函数单调性的定义可判断(定义法判断函数的单调性一般步骤为:①在其定义域内任取两个自变量,且;②作差(或作商)比较的大小;③得出结论,即若则为单调递增函数,若则为单调递减函数).
试题解析:⑴,∴.    2分
⑵因为,定义域为,关于原点成对称区间.     3分

所以是奇函数.                            6分
⑶设,则
    8分
因为,所以
所以,因此,上为单调增函数.     10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数满足:对任意,都有成立,且时,
(1)求的值,并证明:当时,
(2)判断的单调性并加以证明;
(3)若上递减,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数上是减函数,且为奇函数,满足,试求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对定义在区间上的函数,若存在闭区间和常数,使得对任意的,都有,且对任意的都有恒成立,则称函数为区间上的“型”函数.
(1)求证:函数上的“型”函数;
(2)设是(1)中的“型”函数,若不等式对一切的恒成立,求实数的取值范围;
(3)若函数是区间上的“型”函数,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一次研究性课堂上,老师给出函数,甲、乙、丙三位同学在研究此函数的性质时分别给出下列命题:
甲:函数为偶函数;
乙:函数
丙:若则一定有
你认为上述三个命题中正确的个数有            

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若实数满足的最小值为           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

己知函数f(x)=在[-1,1]上的最大值为M(a) ,若函数g(x)=M(x)-有4个零点,则实数t的取值范围为(     )
A.(1,)B.(1,-1)
C.(1,-1)(1, )D.(1,-1)(1,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数 其中,.
(1)若的定义域内恒成立,则实数的取值范围          ;
(2)在(1)的条件下,当取最小值时,上有零点,则的最大值为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,当时,恒成立,则实数的取值范围是(   )
A.(0,1)B.C.D.

查看答案和解析>>

同步练习册答案